ICEberg
ICEberg ID44
NameSXT(MO10)
FamilySXT/R391
OrganismVibrio cholerae O139 MO10
Size (bp)99483
GC content [Genome] (%)47 [47]
Insertion siteprfC
FunctionResistance to the antibiotics sulfamethoxazole, trimethoprim, chloramphenicol, and streptomycin; Toxin–Antitoxin System
Species that ICE can be transferred toVibrio cholerae; Escherichia coli; Salmonella enterica serovar Typhimurium
Nucleotide SequenceAY055428 (complete ICE sequence in this GenBank file)
Replicon-
Coordinates1..99483
Link to view genome context of this ICE in the genome browser
experimental This is a ICE derived from experimental literature.
 

The gene information of SXT(MO10) is not available.
ElementNo. of sequencesDownload
Nucleotide sequencesFasta
ProteinsFasta
(1) Daccord A; Mursell M; Poulin-Laprade D; Burrus V (2012). Dynamics of the SetCD-Regulated Integration and Excision of Genomic Islands Mobilized by Integrating Conjugative Elements of the SXT/R391 Family. J Bacteriol. 194(21):5794-802. [PudMed:22923590] experimental
(2) Pande K; Mendiratta DK; Vijayashri D; Thamke DC; Narang P (2012). SXT constin among Vibrio cholerae isolates from a tertiary care hospital. Indian J Med Res. 135:346-50. [PudMed:22561621] experimental
(3) Spagnoletti M; Ceccarelli D; Colombo MM (2012). Rapid detection by multiplex PCR of Genomic Islands, prophages and Integrative Conjugative Elements in V. cholerae 7th pandemic variants. J Microbiol Methods. 88(1):98-102. [PudMed:22062086] experimental
(4) Chen WY; Ho JW; Huang JD; Watt RM (2011). Functional characterization of an alkaline exonuclease and single strand annealing protein from the SXT genetic element of Vibrio cholerae. BMC Mol Biol. 12(1):16. [PudMed:21501469] experimental
(5) Wozniak RA; Fouts DE; Spagnoletti M; Colombo MM; Ceccarelli D; Garriss G; Dery C; Burrus V; Waldor MK (2009). Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. PLoS Genet. 5(12):e1000786. [PudMed:20041216] in_silico
(6) Bordeleau E; Brouillette E; Robichaud N; Burrus V (2010). Beyond antibiotic resistance: integrating conjugative elements of the SXT/R391 family that encode novel diguanylate cyclases participate to c-di-GMP signalling in Vibrio cholerae. Environ Microbiol. 12(2):510-23. [PudMed:19888998] experimental
(7) Wozniak RA; Waldor MK (2009). A toxin-antitoxin system promotes the maintenance of an integrative conjugative element. PLoS Genet. 5(3):e1000439. [PudMed:19325886] experimental
(8) Ceccarelli D; Daccord A; Rene M; Burrus V (2008). Identification of the origin of transfer (oriT) and a new gene required for mobilization of the SXT/R391 family of integrating conjugative elements. J Bacteriol. 190(15):5328-38. [PudMed:18539733] experimental
(9) Marrero J; Waldor MK (2007). The SXT/R391 family of integrative conjugative elements is composed of two exclusion groups. J Bacteriol. 189(8):3302-5. [PudMed:17307849] experimental
(10) McLeod SM; Burrus V; Waldor MK (2006). Requirement for Vibrio cholerae integration host factor in conjugative DNA transfer. J Bacteriol. 188(16):5704-11. [PudMed:16885438] experimental
(11) Marrero J; Waldor MK (2005). Interactions between inner membrane proteins in donor and recipient cells limit conjugal DNA transfer. Dev Cell. 8(6):963-70. [PudMed:15935784] experimental
(12) Beaber JW; Waldor MK (2004). Identification of operators and promoters that control SXT conjugative transfer. J Bacteriol. 186(17):5945-9. [PudMed:15317801] experimental
(13) Burrus V; Waldor MK (2004). Formation of SXT tandem arrays and SXT-R391 hybrids. J Bacteriol. 186(9):2636-45. [PudMed:15090504] experimental
(14) Boltner D; Osborn AM (2004). Structural comparison of the integrative and conjugative elements R391, pMERPH, R997, and SXT. Plasmid. 51(1):12-23. [PudMed:14711525] experimental
(15) Beaber JW; Hochhut B; Waldor MK (2004). SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature. 427(6969):72-4. [PudMed:14688795] experimental
(16) Burrus V; Waldor MK (2003). Control of SXT integration and excision. J Bacteriol. 185(17):5045-54. [PudMed:12923077] experimental
(17) Thungapathra M; Amita; Sinha KK; Chaudhuri SR; Garg P; Ramamurthy T; Nair GB; Ghosh A (2002). Occurrence of antibiotic resistance gene cassettes aac(6')-Ib, dfrA5, dfrA12, and ereA2 in class I integrons in non-O1, non-O139 Vibrio cholerae strains in India. Antimicrob Agents Chemother. 46(9):2948-55. [PudMed:12183252] experimental
(18) Beaber JW; Hochhut B; Waldor MK (2002). Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. J Bacteriol. 184(15):4259-69. [PudMed:12107144] experimental
(19) Hochhut B; Lotfi Y; Mazel D; Faruque SM; Woodgate R; Waldor MK (2001). Molecular analysis of antibiotic resistance gene clusters in vibrio cholerae O139 and O1 SXT constins. Antimicrob Agents Chemother. 45(11):2991-3000. [PudMed:11600347] experimental
(20) Hochhut B; Beaber JW; Woodgate R; Waldor MK (2001). Formation of chromosomal tandem arrays of the SXT element and R391, two conjugative chromosomally integrating elements that share an attachment site. J Bacteriol. 183(4):1124-32. [PudMed:11157923] experimental
(21) Hochhut B; Marrero J; Waldor MK (2000). Mobilization of plasmids and chromosomal DNA mediated by the SXT element, a constin found in Vibrio cholerae O139. J Bacteriol. 182(7):2043-7. [PudMed:10715015] experimental
(22) Hochhut B; Waldor MK (1999). Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol Microbiol. 32(1):99-110. [PudMed:10216863] experimental
(23) Waldor MK; Tschape H; Mekalanos JJ (1996). A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol. 178(14):4157-65. [PudMed:8763944] experimental
 
experimental experimental literature
in_silico in silico analysis literature