SecReT4
SecReT4 contains data from 925 references related to type IV secretion systems (T4SSs). Last Update: Aug 11, 2012

Categories (Literatures contain following contents are categorized)
reviews experimental studies bioinformatics genome sequencing T4SS component T4SS effectors
conjugation DNA uptake and release effector translocation structural study protein interaction other
all
Search
     

Number of references found for the 'translocation' category : 129

References
(1) McDonough JA et al (2012). Coxiella burnetii Secretion Systems. Adv Exp Med Biol. 984:171-97. [PudMed:22711632]
(2) Gelvin SB (2012). Traversing the Cell: Agrobacterium T-DNA's Journey to the Host Genome. Front Plant Sci. 3:52. [PudMed:22645590]
(3) Harding CR et al (2012). Legionella pneumophila pathogenesis in the Galleria mellonella infection model. Infect Immun. . [PudMed:22645286]
(4) Smolka AJ et al (2012). How Helicobacter pylori infection controls gastric acid secretion. J Gastroenterol. . [PudMed:22565637]
(5) Pham KT et al (2012). CagI is an essential component of the Helicobacter pylori Cag type IV secretion system and forms a complex with CagL. PLoS One. 7(4):e35341. [PudMed:22493745]
(6) Zechner EL et al (2012). Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci. 367(1592):1073-87. [PudMed:22411979]
(7) Rolando M et al (2012). Post-translational modifications of host proteins by Legionella pneumophila: a sophisticated survival strategy. Future Microbiol. 7(3):369-81. [PudMed:22393890]
(8) Liu H et al (2012). Ehrlichia type IV secretion effector ECH0825 is translocated to mitochondria and curbs ROS and apoptosis by upregulating host MnSOD. Cell Microbiol. 14(7):1037-50. [PudMed:22348527]
(9) Voth DE et al (2012). Bacterial Type IV secretion systems: versatile virulence machines. Future Microbiol. 7(2):241-57. [PudMed:22324993]
(10) Goody PR et al (2012). Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J. 31(7):1774-84. [PudMed:22307087]
(11) Dolezal P et al (2012). Legionella pneumophila secretes a mitochondrial carrier protein during infection. PLoS Pathog. 8(1):e1002459. [PudMed:22241989]
(12) de Jong MF et al (2012). Brucellosis and type IV secretion. Future Microbiol. 7(1):47-58. [PudMed:22191446]
(13) Altman E et al (2012). Helicobacter pylori isolates from Greek children express type 2 and type 1 Lewis and alpha1,6-glucan antigens in conjunction with a functional type IV secretion system. J Med Microbiol. 61(Pt 4):559-66. [PudMed:22160312]
(14) Wang H et al (2012). Characterization of CagI in the cag pathogenicity island of Helicobacter pylori. Curr Microbiol. 64(2):191-6. [PudMed:22109855]
(15) Luo ZQ (2012). Legionella secreted effectors and innate immune responses. Cell Microbiol. 14(1):19-27. [PudMed:21985602]
(16) Lockwood S et al (2011). Identification of Anaplasma marginale type IV secretion system effector proteins. PLoS One. 6(11):e27724. [PudMed:22140462]
(17) Lai CH et al (2011). Helicobacter pylori CagA-mediated IL-8 induction in gastric epithelial cells is cholesterol-dependent and requires the C-terminal tyrosine phosphorylation-containing domain. FEMS Microbiol Lett. 323(2):155-63. [PudMed:22092715]
(18) Backert S et al (2011). Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori. Cell Commun Signal. 9:28. [PudMed:22044679]
(19) Berry TM et al (2011). Caught in the act: the dialogue between bacteriophage R17 and the type IV secretion machine of plasmid R1. Mol Microbiol. 82(5):1039-43. [PudMed:22023392]
(20) Shaffer CL et al (2011). Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface. PLoS Pathog. 7(9):e1002237. [PudMed:21909278]
(21) Fernandez-Gonzalez E et al (2011). Transfer of R388 derivatives by a pathogenesis-associated type IV secretion system into both bacteria and human cells. J Bacteriol. 193(22):6257-65. [PudMed:21908662]
(22) Locht C et al (2011). The ins and outs of pertussis toxin. FEBS J. 278(23):4668-82. [PudMed:21740523]
(23) Marchesini MI et al (2011). In search of Brucella abortus type IV secretion substrates: screening and identification of four proteins translocated into host cells through VirB system. Cell Microbiol. 13(8):1261-74. [PudMed:21707904]
(24) Ishijima N et al (2011). BabA-mediated adherence is a potentiator of the Helicobacter pylori type IV secretion system activity. J Biol Chem. 286(28):25256-64. [PudMed:21596743]
(25) de Barsy M et al (2011). Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cell Microbiol. 13(7):1044-58. [PudMed:21501366]
(26) Banta LM et al (2011). An Agrobacterium VirB10 mutation conferring a type IV secretion system gating defect. J Bacteriol. 193(10):2566-74. [PudMed:21421757]
(27) Fontana MF et al (2011). Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent Legionella pneumophila. PLoS Pathog. 7(2):e1001289. [PudMed:21390206]
(28) Terradot L et al (2011). Architecture of the Helicobacter pylori Cag-type IV secretion system. FEBS J. 278(8):1213-22. [PudMed:21352491]
(29) Fischer W (2011). Assembly and molecular mode of action of the Helicobacter pylori Cag type IV secretion apparatus. FEBS J. 278(8):1203-12. [PudMed:21352490]
(30) Cendron L et al (2011). Structural and functional aspects of unique type IV secretory components in the Helicobacter pylori cag-pathogenicity island. FEBS J. 278(8):1223-31. [PudMed:21284804]
(31) Tegtmeyer N et al (2011). Role of Abl and Src family kinases in actin-cytoskeletal rearrangements induced by the Helicobacter pylori CagA protein. Eur J Cell Biol. 90(11):880-90. [PudMed:21247656]
(32) Scheidegger F et al (2011). The Bartonella henselae VirB/Bep system interferes with vascular endothelial growth factor (VEGF) signalling in human vascular endothelial cells. Cell Microbiol. 13(3):419-31. [PudMed:21044238]
(33) Lorenz J et al (2011). Legionella pneumophila-induced IkappaBzeta-dependent expression of interleukin-6 in lung epithelium. Eur Respir J. 37(3):648-57. [PudMed:20650996]
(34) Zhong Q et al (2011). Characterization of peptidoglycan hydrolase in Cag pathogenicity island of Helicobacter pylori. Mol Biol Rep. 38(1):503-9. [PudMed:20358296]
(35) Chen C et al (2010). Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc Natl Acad Sci U S A. 107(50):21755-60. [PudMed:21098666]
(36) Molnar B et al (2010). Molecular pathogenesis of Helicobacter pylori infection: the role of bacterial virulence factors. Dig Dis. 28(4-5):604-8. [PudMed:21088410]
(37) Olbermann P et al (2010). A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet. 6(8):e1001069. [PudMed:20808891]
(38) Hutton ML et al (2010). Helicobacter pylori exploits cholesterol-rich microdomains for induction of NF-kappaB-dependent responses and peptidoglycan delivery in epithelial cells. Infect Immun. 78(11):4523-31. [PudMed:20713621]
(39) Rikihisa Y et al (2010). Type IV secretion in the obligatory intracellular bacterium Anaplasma phagocytophilum. Cell Microbiol. 12(9):1213-21. [PudMed:20670295]
(40) Hayashi T et al (2010). Proteomic analysis of growth phase-dependent expression of Legionella pneumophila proteins which involves regulation of bacterial virulence traits. PLoS One. 5(7):e11718. [PudMed:20661449]
(41) Price CT et al (2010). Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila. J Exp Med. 207(8):1713-26. [PudMed:20660614]
(42) Wallden K et al (2010). Type IV secretion systems: versatility and diversity in function. Cell Microbiol. 12(9):1203-12. [PudMed:20642798]
(43) Murata-Kamiya N et al (2010). Helicobacter pylori exploits host membrane phosphatidylserine for delivery, localization, and pathophysiological action of the CagA oncoprotein. Cell Host Microbe. 7(5):399-411. [PudMed:20478541]
(44) Xu L et al (2010). Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog. 6(3):e1000822. [PudMed:20333253]
(45) Gillespie JJ et al (2010). Phylogenomics reveals a diverse Rickettsiales type IV secretion system. Infect Immun. 78(5):1809-23. [PudMed:20176788]
(46) Cazalet C et al (2010). Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires' disease. PLoS Genet. 6(2):e1000851. [PudMed:20174605]
(47) Niu H et al (2010). Anaplasma phagocytophilum Ats-1 is imported into host cell mitochondria and interferes with apoptosis induction. PLoS Pathog. 6(2):e1000774. [PudMed:20174550]
(48) Pitzschke A et al (2010). New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J. 29(6):1021-32. [PudMed:20150897]
(49) Rego AT et al (2010). Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. Biochem J. 425(3):475-88. [PudMed:20070257]
(50) Allison CC et al (2009). Helicobacter pylori induces MAPK phosphorylation and AP-1 activation via a NOD1-dependent mechanism. J Immunol. 183(12):8099-109. [PudMed:20007577]
(51) Jimenez-Soto LF et al (2009). Helicobacter pylori type IV secretion apparatus exploits beta1 integrin in a novel RGD-independent manner. PLoS Pathog. 5(12):e1000684. [PudMed:19997503]
(52) Alvarez-Martinez CE et al (2009). Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev. 73(4):775-808. [PudMed:19946141]
(53) Fronzes R et al (2009). The structural biology of type IV secretion systems. Nat Rev Microbiol. 7(10):703-14. [PudMed:19756009]
(54) Zhang R et al (2009). Two type IV secretion systems with different functions in Burkholderia cenocepacia K56-2. Microbiology. 155(Pt 12):4005-13. [PudMed:19744991]
(55) Burstein D et al (2009). Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog. 5(7):e1000508. [PudMed:19593377]
(56) Degtyar E et al (2009). A Legionella effector acquired from protozoa is involved in sphingolipids metabolism and is targeted to the host cell mitochondria. Cell Microbiol. 11(8):1219-35. [PudMed:19438520]
(57) Voth DE et al (2009). The Coxiella burnetii ankyrin repeat domain-containing protein family is heterogeneous, with C-terminal truncations that influence Dot/Icm-mediated secretion. J Bacteriol. 191(13):4232-42. [PudMed:19411324]
(58) Vardarova K et al (2009). PKC(alpha) and PKC(epsilon) differentially regulate Legionella pneumophila-induced GM-CSF. Eur Respir J. 34(5):1171-9. [PudMed:19324950]
(59) Rhomberg TA et al (2009). A translocated protein of Bartonella henselae interferes with endocytic uptake of individual bacteria and triggers uptake of large bacterial aggregates via the invasome. Cell Microbiol. 11(6):927-45. [PudMed:19302579]
(60) Chomel BB et al (2009). Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors. Vet Res. 40(2):29. [PudMed:19284965]
(61) Stewart CR et al (2009). Surface translocation by Legionella pneumophila: a form of sliding motility that is dependent upon type II protein secretion. J Bacteriol. 191(5):1537-46. [PudMed:19114479]
(62) Cendron L et al (2009). The Helicobacter pylori CagD (HP0545, Cag24) protein is essential for CagA translocation and maximal induction of interleukin-8 secretion. J Mol Biol. 386(1):204-17. [PudMed:19109970]
(63) Pulliainen AT et al (2009). Bartonella henselae: subversion of vascular endothelial cell functions by translocated bacterial effector proteins. Int J Biochem Cell Biol. 41(3):507-10. [PudMed:19010441]
(64) Hodges LD et al (2009). The Agrobacterium rhizogenes GALLS gene encodes two secreted proteins required for genetic transformation of plants. J Bacteriol. 191(1):355-64. [PudMed:18952790]
(65) Hatakeyama M (2008). Linking epithelial polarity and carcinogenesis by multitasking Helicobacter pylori virulence factor CagA. Oncogene. 27(55):7047-54. [PudMed:19029944]
(66) Al-Khodor S et al (2008). A Dot/Icm-translocated ankyrin protein of Legionella pneumophila is required for intracellular proliferation within human macrophages and protozoa. Mol Microbiol. 70(4):908-23. [PudMed:18811729]
(67) Nijskens C et al (2008). Intracellular rescuing of a B. melitensis 16M virB mutant by co-infection with a wild type strain. Microb Pathog. 45(2):134-41. [PudMed:18547782]
(68) Snider JL et al (2008). The beta1 integrin activates JNK independent of CagA, and JNK activation is required for Helicobacter pylori CagA+-induced motility of gastric cancer cells. J Biol Chem. 283(20):13952-63. [PudMed:18356158]
(69) Kubori T et al (2008). Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol. 67(6):1307-19. [PudMed:18284575]
(70) Soderberg MA et al (2008). A Legionella pneumophila peptidyl-prolyl cis-trans isomerase present in culture supernatants is necessary for optimal growth at low temperatures. Appl Environ Microbiol. 74(5):1634-8. [PudMed:18165359]
(71) Cambronne ED et al (2007). The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation. PLoS Pathog. 3(12):e188. [PudMed:18069892]
(72) Guo M et al (2007). Agrobacterium VirD2-binding protein is involved in tumorigenesis and redundantly encoded in conjugative transfer gene clusters. Mol Plant Microbe Interact. 20(10):1201-12. [PudMed:17918622]
(73) Ninio S et al (2007). Effector proteins translocated by Legionella pneumophila: strength in numbers. Trends Microbiol. 15(8):372-80. [PudMed:17632005]
(74) Tiaden A et al (2007). The Legionella pneumophila response regulator LqsR promotes host cell interactions as an element of the virulence regulatory network controlled by RpoS and LetA. Cell Microbiol. 9(12):2903-20. [PudMed:17614967]
(75) Reyes-Leon A et al (2007). Heterogeneity in the activity of Mexican Helicobacter pylori strains in gastric epithelial cells and its association with diversity in the cagA gene. Infect Immun. 75(7):3445-54. [PudMed:17438024]
(76) Chen J et al (2007). Host cell-dependent secretion and translocation of the LepA and LepB effectors of Legionella pneumophila. Cell Microbiol. 9(7):1660-71. [PudMed:17371403]
(77) Baron C et al (2007). Targeting bacterial secretion systems: benefits of disarmament in the microcosm. Infect Disord Drug Targets. 7(1):19-27. [PudMed:17346208]
(78) Schmid MC et al (2006). A translocated bacterial protein protects vascular endothelial cells from apoptosis. PLoS Pathog. 2(11):e115. [PudMed:17121462]
(79) Garcia JT et al (2006). Measurement of effector protein injection by type III and type IV secretion systems by using a 13-residue phosphorylatable glycogen synthase kinase tag. Infect Immun. 74(10):5645-57. [PudMed:16988240]
(80) Cambronne ED et al (2006). Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems. Traffic. 7(8):929-39. [PudMed:16734660]
(81) VanRheenen SM et al (2006). Members of a Legionella pneumophila family of proteins with ExoU (phospholipase A) active sites are translocated to target cells. Infect Immun. 74(6):3597-606. [PudMed:16714592]
(82) McCullen CA et al (2006). Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol. 22:101-27. [PudMed:16709150]
(83) Hatakeyama M (2006). Helicobacter pylori CagA -- a bacterial intruder conspiring gastric carcinogenesis. Int J Cancer. 119(6):1217-23. [PudMed:16557568]
(84) Backert S et al (2006). Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol. 9(2):207-17. [PudMed:16529981]
(85) Hohlfeld S et al (2006). A C-terminal translocation signal is necessary, but not sufficient for type IV secretion of the Helicobacter pylori CagA protein. Mol Microbiol. 59(5):1624-37. [PudMed:16469000]
(86) Couturier MR et al (2006). Interaction with CagF is required for translocation of CagA into the host via the Helicobacter pylori type IV secretion system. Infect Immun. 74(1):273-81. [PudMed:16368981]
(87) Walker DH et al (2005). Progress in rickettsial genome analysis from pioneering of Rickettsia prowazekii to the recent Rickettsia typhi. Ann N Y Acad Sci. 1063:13-25. [PudMed:16481486]
(88) de Felipe KS et al (2005). Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J Bacteriol. 187(22):7716-26. [PudMed:16267296]
(89) Baron C (2005). From bioremediation to biowarfare: on the impact and mechanism of type IV secretion systems. FEMS Microbiol Lett. 253(2):163-70. [PudMed:16239080]
(90) Naumann M (2005). Pathogenicity island-dependent effects of Helicobacter pylori on intracellular signal transduction in epithelial cells. Int J Med Microbiol. 295(5):335-41. [PudMed:16173500]
(91) Christie PJ et al (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol. 59:451-85. [PudMed:16153176]
(92) Bauer B et al (2005). Analysis of cell type-specific responses mediated by the type IV secretion system of Helicobacter pylori. Infect Immun. 73(8):4643-52. [PudMed:16040977]
(93) Sexton JA et al (2005). Genetic analysis of the Legionella pneumophila DotB ATPase reveals a role in type IV secretion system protein export. Mol Microbiol. 57(1):70-84. [PudMed:15948950]
(94) Rieder G et al (2005). Helicobacter pylori cag-type IV secretion system facilitates corpus colonization to induce precancerous conditions in Mongolian gerbils. Gastroenterology. 128(5):1229-42. [PudMed:15887107]
(95) Bardill JP et al (2005). IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol Microbiol. 56(1):90-103. [PudMed:15773981]
(96) Rieder G et al (2005). Interaction of Helicobacter pylori with host cells: function of secreted and translocated molecules. Curr Opin Microbiol. 8(1):67-73. [PudMed:15694859]
(97) Vergunst AC et al (2005). Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci U S A. 102(3):832-7. [PudMed:15644442]
(98) Schulein R et al (2005). A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. Proc Natl Acad Sci U S A. 102(3):856-61. [PudMed:15642951]
(99) Nagai H et al (2005). A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci U S A. 102(3):826-31. [PudMed:15613486]
(100) Christie PJ (2004). Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. Biochim Biophys Acta. 1694(1-3):219-34. [PudMed:15546668]
(101) Hubber A et al (2004). Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol Microbiol. 54(2):561-74. [PudMed:15469524]
(102) VanRheenen SM et al (2004). IcmF and DotU are required for optimal effector translocation and trafficking of the Legionella pneumophila vacuole. Infect Immun. 72(10):5972-82. [PudMed:15385501]
(103) Selbach M et al (2004). The Helicobacter pylori CagA protein induces tyrosine dephosphorylation of ezrin. Proteomics. 4(10):2961-8. [PudMed:15378755]
(104) Azuma T (2004). Helicobacter pylori CagA protein variation associated with gastric cancer in Asia. J Gastroenterol. 39(2):97-103. [PudMed:15069615]
(105) Chen J et al (2004). Legionella effectors that promote nonlytic release from protozoa. Science. 303(5662):1358-61. [PudMed:14988561]
(106) Cascales E et al (2003). The versatile bacterial type IV secretion systems. Nat Rev Microbiol. 1(2):137-49. [PudMed:15035043]
(107) Hase K et al (2003). Expression of LL-37 by human gastric epithelial cells as a potential host defense mechanism against Helicobacter pylori. Gastroenterology. 125(6):1613-25. [PudMed:14724813]
(108) Ding Z et al (2003). The outs and ins of bacterial type IV secretion substrates. Trends Microbiol. 11(11):527-35. [PudMed:14607070]
(109) Azuma T et al (2003). The effects of cure of Helicobacter pylori infection on the signal transduction of gastric epithelial cells. Aliment Pharmacol Ther. 18 Suppl 1:39-44. [PudMed:12925139]
(110) Aras RA et al (2003). Natural variation in populations of persistently colonizing bacteria affect human host cell phenotype. J Infect Dis. 188(4):486-96. [PudMed:12898434]
(111) Brassinga AK et al (2003). A 65-kilobase pathogenicity island is unique to Philadelphia-1 strains of Legionella pneumophila. J Bacteriol. 185(15):4630-7. [PudMed:12867476]
(112) Duckely M et al (2003). The VirE2 protein of Agrobacterium tumefaciens: the Yin and Yang of T-DNA transfer. FEMS Microbiol Lett. 223(1):1-6. [PudMed:12798992]
(113) Nagai H et al (2003). Show me the substrates: modulation of host cell function by type IV secretion systems. Cell Microbiol. 5(6):373-83. [PudMed:12780775]
(114) Schrammeijer B et al (2003). Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucleic Acids Res. 31(3):860-8. [PudMed:12560481]
(115) Fischer W et al (2002). Type IV secretion systems in pathogenic bacteria. Int J Med Microbiol. 292(3-4):159-68. [PudMed:12398207]
(116) Krall L et al (2002). Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A. 99(17):11405-10. [PudMed:12177443]
(117) Schroder G et al (2002). TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: inner membrane gate for exported substrates. J Bacteriol. 184(10):2767-79. [PudMed:11976307]
(118) Selbach M et al (2002). Functional analysis of the Helicobacter pylori cag pathogenicity island reveals both VirD4-CagA-dependent and VirD4-CagA-independent mechanisms. Infect Immun. 70(2):665-71. [PudMed:11796597]
(119) Fischer W et al (2001). Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol. 42(5):1337-48. [PudMed:11886563]
(120) Naumann M (2001). Host cell signaling in Helicobacter pylori infection. Int J Med Microbiol. 291(4):299-305. [PudMed:11680790]
(121) Simone M et al (2001). The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system. Mol Microbiol. 41(6):1283-93. [PudMed:11580834]
(122) Sagulenko E et al (2001). Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J Bacteriol. 183(20):5813-25. [PudMed:11566978]
(123) Zhao Z et al (2001). Activities of virE1 and the VirE1 secretion chaperone in export of the multifunctional VirE2 effector via an Agrobacterium type IV secretion pathway. J Bacteriol. 183(13):3855-65. [PudMed:11395448]
(124) Christie PJ (2001). Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol. 40(2):294-305. [PudMed:11309113]
(125) Stein M et al (2001). Interaction of Helicobacter pylori with professional phagocytes: role of the cag pathogenicity island and translocation, phosphorylation and processing of CagA. Cell Microbiol. 3(1):21-31. [PudMed:11207617]
(126) Backert S et al (2000). Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol. 2(2):155-64. [PudMed:11207572]
(127) Christie PJ et al (2000). Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol. 8(8):354-60. [PudMed:10920394]
(128) Odenbreit S et al (2000). Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science. 287(5457):1497-500. [PudMed:10688800]
(129) Stein M et al (2000). Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci U S A. 97(3):1263-8. [PudMed:10655519]