Home 
Last Update: June 1, 2012

Categories
Reviews Isolation and structure characterization Fermentation and production Biosynthesis
Bioactivity Chemical synthesis Anticancer Others
Relative Books                                           All
Search
    

Number of references found for the 'All' category : 379

(1) Duan, et al. (2012). Insights into quinaldic acid moiety formation in thiostrepton biosynthesis facilitating fluorinated thiopeptide generation. Chem Biol. 19(4):443-8. [PudMed:19572592]
(2) Walter, et al. (2012). Thiostrepton inhibits stable 70S ribosome binding and ribosome-dependent GTPase activation of elongation factor G and elongation factor 4. Nucleic Acids Res. 40(1):360-70. [PudMed:21908407]
(3) Wei, et al. (2011). A simple reverse genetics approach to elucidating the biosynthetic pathway of nocathiacin. Biotechnol Lett. 33(3):585-91. [PudMed:21107653]
(4) Zhang, et al. (2011). Characterization of NocL Involved in Thiopeptide Nocathiacin I Biosynthesis: A [4Fe-4S] CLUSTER AND THE CATALYSIS OF A RADICAL S-ADENOSYLMETHIONINE ENZYME. J Biol Chem. 286(24):21287-94. [PudMed:21454624]
(5) LaMarche, et al. (2011). 4-Aminothiazolyl analogues of GE2270 A: antibacterial lead finding. J Med Chem. 54(7):2517-21. [PudMed:21405087]
(6) Lamarche, et al. (2011). 4-Aminothiazolyl analogs of GE2270 A: Design, synthesis and evaluation of imidazole analogs. Bioorg Med Chem Lett. 21(11):3210-5. [PudMed:21550238]
(7) Nakano, et al. (2011). Siomycin A targets brain tumor stem cells partially through a MELK-mediated pathway. Neuro Oncol. 13(6):622-34. [PudMed:21558073]
(8) Aulakh, et al. (2011). Total synthesis and complete structural assignment of thiocillin I. J Am Chem Soc. 133(15):5900-4. [PudMed:21446660]
(9) Zhang, et al. (2011). Radical-mediated enzymatic carbon chain fragmentation-recombination.. Nat Chem Biol. 7(3):154-60. [PudMed:21240261]
(10) Arcinas, et al. (2011). Enzymology: Radical break-up, blissful make-up. Nat Chem Biol. 7(3):133-4. [PudMed:21321550]
(11) Liao, et al. (2011). Thiostrepton maturation involving a deesterification-amidation way to process the C-terminally methylated peptide backbone.. J Am Chem Soc. 133(9):2852-5. [PudMed:21323347]
(12) Young, et al. (2011). Identification of the thiazolyl peptide GE37468 gene cluster from Streptomyces ATCC 55365 and heterologous expression in Streptomyces lividans. Proc Natl Acad Sci U S A. . [PudMed:21788474]
(13) Pandit, et al. (2011). Thiazole antibiotic thiostrepton synergize with bortezomib to induce apoptosis in cancer cells.. PLoS One.. 6(2):e17110. [PudMed:21365012]
(14) Hegde, et al. (2011). The transcription factor FOXM1 is a cellular target of the natural product thiostrepton.. Nat Chem.. 3(10):829. [PudMed:21860463]
(15) Li, et al. (2011). Heterologous production of thiostrepton A and biosynthetic engineering of thiostrepton analogs. Mol Biosyst. 7(1):82-90. [PudMed:21107477]
(16) Zou, et al. (2011). Synthesis of the pyridine core of cyclothiazomycin. Org Lett. 13(16):4352-5. [PudMed:21761830]
(17) Mikolajka, et al. (2011). Differential effects of thiopeptide and orthosomycin antibiotics on translational GTPases. Chem Biol. 18(5):589-600. [PudMed:21609840]
(18) Leeds, et al. (2011). In vitro and in vivo activities of novel, semisynthetic thiopeptide inhibitors of bacterial elongation factor Tu. Antimicrob Agents Chemother. 55(11):5277-83. [PudMed:21825297]
(19) Mizuhara, et al. (2011). Antifungal thiopeptide cyclothiazomycin B1 exhibits growth inhibition accompanying morphological changes via binding to fungal cell wall chitin. Bioorg Med Chem. 19(18):5300-10. [PudMed:21885289]
(20) Ciufolini, et al. (2010). Micrococcin P1: structure, biology and synthesis. Nat Prod Rep. 27(3):330-42. [PudMed:20179875]
(21) Wei, et al. (2010). Separation of structurally similar nocathiacin analogues by reversed phase chromatography. J Chromatogr A. 1217(18):3038-43. [PudMed:20303091]
(22) Takagi, et al. (2010). JBIR-83 and JBIR-84, new promothiocin derivatives, isolated from Streptomyces sp. RI19. J Antibiot (Tokyo). 63(7):405-8. [PudMed:20551986]
(23) Engelhardt, et al. (2010). Production of a new thiopeptide antibiotic, TP-1161, by a marine Nocardiopsis species. Appl Environ Microbiol. 76(15):4969-76. [PudMed:20562278]
(24) Wei, et al. (2010). Microbial generation of nocathiacin acid from nocathiacin I. Bioresour Technol. 101(10):3617-22. [PudMed:20106660]
(25) Wang, et al. (2010). Identification and analysis of the biosynthetic gene cluster encoding the thiopeptide antibiotic cyclothiazomycin in Streptomyces hygroscopicus 10-22. Appl Environ Microbiol. 76(7):2335-44. [PudMed:20154110]
(26) Yang, et al. (2010). Crystallization and preliminary crystallographic analysis of nosiheptide-resistance methyltransferase from Streptomyces actuosus in complex with SAM. Acta Crystallogr Sect F Struct Biol Cryst Commun. 66(Pt 5):579-82. [PudMed:20445264]
(27) Bowers, et al. (2010). Manipulation of thiocillin variants by prepeptide gene replacement: structure, conformation, and activity of heterocycle substitution mutants. J Am Chem Soc. 132(21):7519-27. [PudMed:20455532]
(28) Ding, et al. (2010). Moving posttranslational modifications forward to biosynthesize the glycosylated thiopeptide nocathiacin I in Nocardia sp. ATCC202099. Mol Biosyst. 6(7):1180-5. [PudMed:20473441]
(29) Yang, et al. (2010). Crystal structure of the nosiheptide-resistance methyltransferase of Streptomyces actuosus. Biochemistry. 49(30):6440-50. [PudMed:20550164]
(30) Yu, et al. (2010). NosA catalyzing carboxyl-terminal amide formation in nosiheptide maturation via an enamine dealkylation on the serine-extended precursor peptide. J Am Chem Soc. 132(46):16324-6. [PudMed:21047073]
(31) Li, et al. (2010). Recent advances in thiopeptide antibiotic biosynthesis.. Nat Prod Rep. 27(2):153-64. [PudMed:20111801]
(32) Ammer, et al. (2010). Total syntheses of the thiopeptides amythiamicin C and D.. Chemistry.. 16(47):14083-93.. [PudMed:20960446]
(33) Engelhardt, et al. (2010). Isolation and characterization of the gene cluster for biosynthesis of the thiopeptide antibiotic TP-1161.. Appl Environ Microbiol.. 76(21):7093-101.. [PudMed:20851988]
(34) Baumann, et al. (2010). Molecular determinants of microbial resistance to thiopeptide antibiotics. J Am Chem Soc. 132(20):6973-81. [PudMed:20441189]
(35) Mukai, et al. (2009). Nocardithiocin, a novel thiopeptide antibiotic, produced by pathogenic Nocardia pseudobrasiliensis IFM 0757. J Antibiot (Tokyo). 62(11):613-9. [PudMed:19745839]
(36) Schoof, et al. (2009). D-cysteine occurrence in thiostrepton may not necessitate an epimerase. Chem Commun (Camb). (46):7113-5. [PudMed:19921000]
(37) Junker, et al. (2009). Actinomycetes scale-up for the production of the antibacterial, nocathiacin. Biotechnol Prog. 25(1):176-88. [PudMed:19205044]
(38) Wieland, et al. (2009). Thirteen posttranslational modifications convert a 14-residue peptide into the antibiotic thiocillin. Proc Natl Acad Sci U S A. 106(8):2549-53. [PudMed:19196969]
(39) Kelly, et al. (2009). Thiostrepton biosynthesis: prototype for a new family of bacteriocins. J Am Chem Soc. 131(12):4327-34. [PudMed:19265401]
(40) Myronovskyy, et al. (2009). A gene cloning system for the siomycin producer Streptomyces sioyaensis NRRL-B5408. Folia Microbiol (Praha). 54(2):91-6. [PudMed:19418244]
(41) Yu, et al. (2009). Nosiheptide biosynthesis featuring a unique indole side ring formation on the characteristic thiopeptide framework. ACS Chem Biol. 4(10):855-64. [PudMed:19678698]
(42) Acker, et al. (2009). Generation of thiocillin variants by prepeptide gene replacement and in vivo processing by Bacillus cereus. J Am Chem Soc. 131(48):17563-5. [PudMed:19911780]
(43) Dunstan, et al. (2009). Structure of the thiostrepton resistance methyltransferase.S-adenosyl-L-methionine complex and its interaction with ribosomal RNA. J Biol Chem. 284(25):17013-20. [PudMed:19369248]
(44) Xu, et al. (2009). Nocathiacin analogs: Synthesis and antibacterial activity of novel water-soluble amides. Bioorg Med Chem Lett. 19(13):3531-5. [PudMed:19447613]
(45) Halasi, et al. (2009). Wild-type p53 protects normal cells against apoptosis induced by thiostrepton. Cell Cycle. 8(17):2850-1. [PudMed:19652535]
(46) Lefranc, et al. (2009). Total synthesis and stereochemical assignment of micrococcin P1. Angew Chem Int Ed Engl. 48(23):4198-201. [PudMed:19408268]
(47) Lu, et al. (2009). Aza-Wittig-supported synthesis of the A ring of nosiheptide. Angew Chem Int Ed Engl. . 48(43):8137-40.. [PudMed:19784984]
(48) Liao, et al. (2009). Thiopeptide biosynthesis featuring ribosomally synthesized precursor peptides and conserved posttranslational modifications.. Chem Biol. 16(2):141-7. [PudMed:19246004]
(49) Arndt, et al. (2009). Thiopeptide antibiotic biosynthesis.. Angew Chem Int Ed Engl. 48(37):6770-3. [PudMed:19536800]
(50) Morris, et al. (2009). Ribosomally synthesized thiopeptide antibiotics targeting elongation factor Tu.. J Am Chem Soc.. 131(16):5946-55. [PudMed:19338336]
(51) Bhat, et al. (2009). Thiazole antibiotics target FoxM1 and induce apoptosis in human cancer cells.. PLoS One. 4(5):e5592. [PudMed:19440351]
(52) Aulakh, et al. (2009). An improved synthesis of pyridine-thiazole cores of thiopeptide antibiotics. J Org Chem. 74(15):5750-3. [PudMed:19572592]
(53) Starosta, et al. (2009). Identification of distinct thiopeptide-antibiotic precursor lead compounds using translation machinery assays. Chem Biol. 16(10):1087-96. [PudMed:19875082]
(54) Zhang, et al. (2008). Overexpression of yeast S-adenosylmethionine synthetase metK in Streptomyces actuosus leads to increased production of nosiheptide. Appl Microbiol Biotechnol. 78(6):991-5. [PudMed:18330566]
(55) Feng, et al. (2008). Recombinant high-density lipoprotein complex as a targeting system of nosiheptide to liver cells. J Drug Target. 16(6):502-8. [PudMed:18604663]
(56) Kimber, et al. (2008). Construction of macrocyclic thiodepsipeptides: synthesis of a nosiheptide 'southern hemisphere' model system. Chem Commun (Camb). (5):591-3. [PudMed:18209799]
(57) Mori, et al. (2008). Total synthesis of siomycin A: completion of the total synthesis. Chem Asian J. 3(6):1013-25. [PudMed:18464235]
(58) Mori, et al. (2008). Total synthesis of siomycin A: construction of synthetic segments. Chem Asian J. 3(6):984-1012. [PudMed:18464237]
(59) Li, et al. (2008). N-Demethylation of nocathiacin I via photo-oxidation. Bioorg Med Chem Lett. 18(14):4051-3. [PudMed:18556203]
(60) Delgado, et al. (2008). Concise total synthesis of the thiazolyl peptide antibiotic GE2270 A.. Chemistry.. 14(8):2322-39.. [PudMed:18270986]
(61) Harms, et al. (2008). Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin.. Mol Cell. . 30(1):26-38.. [PudMed:18406324]
(62) Bhat, et al. (2008). Novel anticancer compounds induce apoptosis in melanoma cells.. Cell Cycle. 7(12):1851-5. [PudMed:18583930]
(63) Kwok, et al. (2008). Thiostrepton selectively targets breast cancer cells through inhibition of forkhead box M1 expression.. Mol Cancer Ther. . 7(7):2022-32. [PudMed:18645012]
(64) Hernández, et al. (2008). Synthesis and antitumor activity of mechercharmycin A analogues.. J Med Chem. 51(18):5722-30. [PudMed:18763756]
(65) Beltrametti, et al. (2007 ). Protoplast fusion and gene recombination in the uncommon Actinomycete Planobispora rosea producing GE2270. J Antibiot (Tokyo).. 60(7):447-54. [PudMed:17721003]
(66) Jonker, et al. (2007). L11 domain rearrangement upon binding to RNA and thiostrepton studied by NMR spectroscopy. Nucleic Acids Res. 35(2):441-54. [PudMed:17169991]
(67) Huang, et al. (2007). Observation of O-H...N scalar coupling across a hydrogen bond in nocathiacin I. Magn Reson Chem. 45(6):447-50. [PudMed:17431856]
(68) Lee, et al. (2007). The structure of free L11 and functional dynamics of L11 in free, L11-rRNA(58 nt) binary and L11-rRNA(58 nt)-thiostrepton ternary complexes. J Mol Biol. 367(4):1007-22. [PudMed:17292917]
(69) Gonzalez, et al. (2007). Thiostrepton inhibition of tRNA delivery to the ribosome. RNA. 13(12):2091-7. [PudMed:17951333]
(70) Hughes, et al. (2007). From amino acids to heteroaromatics--thiopeptide antibiotics, nature's heterocyclic peptides.. Angew Chem Int Ed Engl. 46(42):7930-54. [PudMed:17854013]
(71) Xu, et al. (2007). Conversion of nocathiacin I to nocathiacin acid by a mild and selective cleavage of dehydroalanine. J Org Chem. 72(19):7447-50. [PudMed:17705543]
(72) Lu, et al. (2007). Hetero Diels-Alder synthesis of 3-hydroxypyridines: access to the nosiheptide core.. J Org Chem.. 72(11):4205-12.. [PudMed:17447818]
(73) Müller, et al. (2007). Total synthesis of the thiazolyl peptide GE2270 A.. Angew Chem Int Ed Engl.. 46(25):4771-4. [PudMed:17503407]
(74) Nicolaou, et al. (2007). New synthetic technology for the construction of N-hydroxyindoles and synthesis of nocathiacin I model systems.. Tetrahedron.. 63(27):6088-6114.. [PudMed:20606766]
(75) García-Marcos, et al. (2007). In vivo assembling of bacterial ribosomal protein L11 into yeast ribosomes makes the particles sensitive to the prokaryotic specific antibiotic thiostrepton.. Nucleic Acids Res. . 35(21):7109-17.. [PudMed:17940088]
(76) Hashimoto, et al. (2006). An RNA polymerase inhibitor, cyclothiazomycin B1, and its isomer. Bioorg Med Chem. 14(24):8259-70. [PudMed:17010619]
(77) Parmeggiani, et al. (2006). Structural basis of the action of pulvomycin and GE2270 A on elongation factor Tu. Biochemistry. 45(22):6846-57. [PudMed:16734421]
(78) Naidu, et al. (2006). Synthesis and antibacterial activity of nocathiacin I analogues. Bioorg Med Chem Lett. 16(13):3545-9. [PudMed:16621551]
(79) Delgado, et al. (2006). Synthesis and configurational assignment of the amino alcohol in the eastern fragment of the GE2270 antibiotics by regio- and stereoselective addition of 2-metalated 4-bromothiazoles to alpha-chiral electrophiles.. J Org Chem.. 71(12):4599-608. [PudMed:16749794]
(80) Radhakrishnan, et al. (2006). Identification of a chemical inhibitor of the oncogenic transcription factor forkhead box M1.. Cancer Res.. 66(19):9731-5. [PudMed:17018632]
(81) Hang, et al. (2005). Electronic structure calculations on the thiazole-containing antibiotic thiostrepton: molecular mechanics, semi-empirical and ab initio analyses. Bioorg Med Chem Lett. 15(5):1471-4. [PudMed:15713409]
(82) Bowen, et al. (2005). Interaction of thiostrepton and elongation factor-G with the ribosomal protein L11-binding domain. J Biol Chem. 280(4):2934-43. [PudMed:15492007]
(83) Naidu, et al. (2005). Synthesis, in vitro, and in vivo antibacterial activity of nocathiacin I thiol-Michael adducts. Bioorg Med Chem Lett. 15(8):2069-72. [PudMed:15808470]
(84) Bausch, et al. (2005). Interactions of the N-terminal domain of ribosomal protein L11 with thiostrepton and rRNA. J Biol Chem. 280(33):29956-63. [PudMed:15972821]
(85) Bagley, et al. (2005). Thiopeptide antibiotics.. Chem Rev.. 105(2):685-714. [PudMed:15700961]
(86) Connolly, et al. (2005). Chemical conversion of nocathiacin I to nocathiacin II and a lactone analogue of glycothiohexide alpha. J Nat Prod. 68(4):550-3. [PudMed:15844946]
(87) Nicolaou, et al. (2005). Construction of substituted N-hydroxyindoles: synthesis of a nocathiacin I model system. Angew Chem Int Ed Engl. 44(24):3736-40. [PudMed:15892095]
(88) Hughes, et al. (2005). Total synthesis of the thiopeptide antibiotic amythiamicin D. J Am Chem Soc. 127(44):15644-51. [PudMed:16262432]
(89) Nicolaou, et al. (2005). Total synthesis of thiostrepton. Retrosynthetic analysis and construction of key building blocks.. J Am Chem Soc.. 127(31):11159-75. [PudMed:16076224]
(90) Nicolaou, et al. (2005). Total synthesis of thiostrepton. Assembly of key building blocks and completion of the synthesis.. J Am Chem Soc.. 127(31):11176-83. [PudMed:16076225]
(91) Nicolaou, et al. (2005). Discovery of a biologically active thiostrepton fragment.. J Am Chem Soc.. 127(43):15042-4.. [PudMed:16248640]
(92) Bagley, et al. (2004). The stereochemistry of micrococcin P1 reinvestigated. J Antibiot (Tokyo). 57(12):829-31. [PudMed:15745121]
(93) Regueiro-Ren, et al. (2004). Novel semi-synthetic nocathiacin antibiotics: synthesis and antibacterial activity of bis- and mono-O-alkylated derivatives. Bioorg Med Chem Lett. 14(1):171-5. [PudMed:14684322]
(94) Naidu, et al. (2004). Synthesis and antibacterial activity of O-substituted nocathiacin I derivatives. Bioorg Med Chem Lett. 14(14):3743-6. [PudMed:15203154]
(95) Seo, et al. (2004). Kinetics and thermodynamics of RRF, EF-G, and thiostrepton interaction on the Escherichia coli ribosome. Biochemistry. 43(40):12728-40. [PudMed:15461445]
(96) Naidu, et al. (2004). Nocathiacin I analogues: synthesis, in vitro and in vivo biological activity of novel semi-synthetic thiazolyl peptide antibiotics. Bioorg Med Chem Lett. 14(22):5573-7. [PudMed:15482927]
(97) Ueno, et al. (2004). Suppressive effect of antibiotic siomycin on antibody production. J Antibiot (Tokyo). 57(9):590-6. [PudMed:15580960]
(98) Bagley, et al. (2004). First synthesis of an amythiamicin pyridine cluster. Chem Commun (Camb). (1):102-3. [PudMed:14737352]
(99) Bentley, et al. (2004). Synthesis of the 2,3,4-trisubstituted indole fragments of nosiheptide and glycothiohexide. Org Biomol Chem. 2(5):701-8. [PudMed:14985810]
(100) Hughes, et al. (2004). Total synthesis of the thiopeptide amythiamicin D. Chem Commun (Camb). (8):946-8. [PudMed:15069488]
(101) Bagley, et al. (2004). Stereoselective synthesis of the gamma-lactam hydrolysate of the thiopeptide cyclothiazomycin. Org Lett. 6(19):3401-4. [PudMed:15355062]
(102) Pucci, et al. (2004). Antimicrobial evaluation of nocathiacins, a thiazole peptide class of antibiotics. Antimicrob Agents Chemother. 48(10):3697-701. [PudMed:15388422]
(103) Nagai, et al. (2003). YM-266183 and YM-266184, novel thiopeptide antibiotics produced by Bacillus cereus isolated from a marine sponge. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological properties. J Antibiot (Tokyo). 56(2):123-8. [PudMed:12715871]
(104) Suzumura, et al. (2003). YM-266183 and YM-266184, novel thiopeptide antibiotics produced by Bacillus cereus isolated from a marine sponge II. Structure elucidation. J Antibiot (Tokyo). 56(2):129-34. [PudMed:12715872]
(105) Gastaldo, et al. (2003). Changes in GE2270 antibiotic production in Planobispora rosea through modulation of methylation metabolism. Microbiology. 149(Pt 6):1523-32. [PudMed:12777492]
(106) Clough, et al. (2003). Combinatorial modification of natural products: synthesis and in vitro analysis of derivatives of thiazole peptide antibiotic GE2270 A: A-ring modifications.. Bioorg Med Chem Lett.. 13(20):3409-14. [PudMed:14505638]
(107) Leet, et al. (2003). Nocathiacins, new thiazolyl peptide antibiotics from Nocardia sp. II. Isolation, characterization, and structure determination. J Antibiot (Tokyo). 56(3):232-42. [PudMed:12760679]
(108) Ohyama, et al. (2002). Antibiotic A10255 (thioplabin) enhances fibrin binding and activation of plasminogen. J Antibiot (Tokyo). 55(1):83-91. [PudMed:11918071]
(109) Cameron, et al. (2002). Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome. J Mol Biol. 319(1):27-35. [PudMed:12051934]
(110) Regueiro-Ren, et al. (2002). Mild method for cleavage of dehydroalanine units: highly efficient conversion of nocathiacin I to nocathiacin IV. J Org Chem. 67(24):8699-702. [PudMed:12444665]
(111) Hrnciar, et al. (2002). Synthesis of novel nocathiacin-class antibiotics. Condensation of glycolaldehyde with primary amides and tandem reductive amination of amadori-rearranged 2-oxoethyl intermediates. J Org Chem. 67(25):8789-93. [PudMed:12467390]
(112) Castro, et al. (2002). Radamycin, a novel thiopeptide produced by streptomyces sp. RSP9. II. Physico-chemical properties and structure determination.. J Antibiot (Tokyo).. 55(4):391-5. [PudMed:12061547]
(113) González, et al. (2002). Radamycin, a novel thiopeptide produced by streptomyces sp. RSP9. I. Taxonomy, fermentation, isolation and biological activities.. J Antibiot (Tokyo).. 55(4):383-90. [PudMed:12061546]
(114) Matseliukh, et al. (2001). Cloning of the thiostrepton-resistance gene for replicating copies of Streptomycete plasmids. Mikrobiol Z.. 63(4):45-52. [PudMed:11692677]
(115) De, et al. (2001). Biosynthesis of the thiazolylpeptide antibiotic GE2270. J Antibiot (Tokyo). 54(12):1066-71. [PudMed:11858662]
(116) Carnio, et al. (2001). Pyridinyl polythiazole class peptide antibiotic micrococcin P1, secreted by foodborne Staphylococcus equorum WS2733, is biosynthesized nonribosomally.. Eur J Biochem.. 268(24):6390-401. [PudMed:11737193]
(117) Horii, et al. (2000 ). Rapid determination of nosiheptide in meat and egg by liquid chromatography with fluorescence detection.. J AOAC Int.. 83(1):17-9.. [PudMed:10692999]
(118) shraf-Khorassani, et al. (2000). Analysis of the sulfomycin component of alexomycin in animal feed by enhanced solvent extraction and supercritical fluid chromatography.. J Biochem Biophys Methods.. 43(1-3):147-56.. [PudMed:10869673]
(119) Carnio, et al. (2000). The macrocyclic peptide antibiotic micrococcin P(1) is secreted by the food-borne bacterium Staphylococcus equorum WS 2733 and inhibits Listeria monocytogenes on soft cheese.. Appl Environ Microbiol.. 66(6):2378-84. [PudMed:10831414]
(120) Vijaya, et al. (1999). Methylsulfomycin I, a new cyclic peptide antibiotic from a Streptomyces sp. HIL Y-9420704. J Nat Prod. 62(11):1562-4. [PudMed:10579874]
(121) Ciufolini, et al. (1999). Synthesis of the Bycroft-Gowland structure of micrococcin P1. Org Lett. 1(11):1843-6. [PudMed:10836044]
(122) Porse, et al. (1999). The antibiotic micrococcin acts on protein L11 at the ribosomal GTPase centre. J Mol Biol. 287(1):33-45. [PudMed:10074405]
(123) Puar, et al. (1998). Sch 40832: a novel thiostrepton from Micromonospora carbonacea. J Antibiot (Tokyo). 51(2):221-4. [PudMed:9544944]
(124) Sasaki, et al. (1998). MJ347-81F4 A & B, novel antibiotics from Amycolatopsis sp.: taxonomic characteristics, fermentation, and antimicrobial activity. J Antibiot (Tokyo). 51(8):715-21. [PudMed:9766463]
(125) Rogers, et al. (1998). The antibiotic micrococcin is a potent inhibitor of growth and protein synthesis in the malaria parasite. Antimicrob Agents Chemother. 42(3):715-6. [PudMed:9517961]
(126) Kenny, et al. (1997). In vitro antimicrobial activity of the thiazolyl peptide antibiotic MDL 62,879 (GE2270 A). Chemotherapy. 43(4):254-63. [PudMed:9209782]
(127) Sosio, et al. (1996). An elongation factor Tu (EF-Tu) resistant to the EF-Tu inhibitor GE2270 in the producing organism Planobispora rosea. Mol Microbiol. 22(1):43-51. [PudMed:8899707]
(128) Stella, et al. (1995). Antibiotic GE37468 A: a new inhibitor of bacterial protein synthesis. I. Isolation and characterization. J Antibiot (Tokyo). 48(8):780-6. [PudMed:7592021]
(129) Selva, et al. (1995). Components of the GE2270 complex produced by Planobispora rosea ATCC 53773. J Antibiot (Tokyo). 48(9):1039-42. [PudMed:7592050]
(130) Colombo, et al. (1995). Contribution of mass spectrometry to the structural confirmation of components of the antibiotic GE2270 complex. Rapid Commun Mass Spectrom. 9(8):717-22. [PudMed:7647369]
(131) Yun, et al. (1995). Promoinducin, a novel thiopeptide produced by Streptomyces sp. SF2741. Biosci Biotechnol Biochem. 59(5):876-80. [PudMed:7787302]
(132) Ferrari, et al. (1995). Antibiotic GE37468 A: a novel inhibitor of bacterial protein synthesis. II. Structure elucidation. J Antibiot (Tokyo). 48(11):1304-11. [PudMed:8557573]
(133) Lau, et al. (1994). Berninamycins B, C, and D, minor metabolites from Streptomyces bernensis. J Antibiot (Tokyo). 47(12):1466-72. [PudMed:7844041]
(134) Yun, et al. (1994). Microbial metabolites with tipA promoter inducing activity. III. Thioxamycin and its novel derivative, thioactin, two thiopeptides produced by Streptomyces sp. DP94. J Antibiot (Tokyo). 47(12):1541-5. [PudMed:7844047]
(135) Northcote, et al. (1994). Glycothiohexide alpha, a novel antibiotic produced by "Sebekia" sp., LL-14E605. II. Isolation and physical-chemical characterization. J Antibiot (Tokyo). 47(8):894-900. [PudMed:7928676]
(136) Northcote, et al. (1994). Glycothiohexide alpha, a novel antibiotic produced by "Sebekia" sp., LL-14E605. III. Structural elucidation. J Antibiot (Tokyo). 47(8):901-8. [PudMed:7928677]
(137) Yun, et al. (1994). Microbial metabolites with tipA promoter inducing activity. II. Geninthiocin, a novel thiopeptide produced by Streptomyces sp. DD84. J Antibiot (Tokyo). 47(9):969-75. [PudMed:7928698]
(138) Shimanaka, et al. (1994). Novel antibiotics, amythiamicins. II. Structure elucidation of amythiamicin D. J Antibiot (Tokyo). 47(10):1145-52. [PudMed:7961165]
(139) Rosendahl, et al. (1994). The antibiotics micrococcin and thiostrepton interact directly with 23S rRNA nucleotides 1067A and 1095A. Nucleic Acids Res. 22(3):357-63. [PudMed:8127673]
(140) Steinberg, et al. (1994). Glycothiohexides, novel antibiotics produced by "Sebekia" sp. LL-14E605. I. Taxonomy, fermentation and biological evaluation. J Antibiot (Tokyo). . 47(8):887-93. [PudMed:7928675]
(141) Yun, et al. (1994). Promothiocins A and B novel thiopeptides with a tipA promoter inducing activity produced by Streptomyces sp. SF2741.. J Antibiot (Tokyo). 47(4):510-4. [PudMed:8195055]
(142) Anborgh, et al. (1993). Probing the reactivity of the GTP- and GDP-bound conformations of elongation factor Tu in complex with the antibiotic GE2270 A. J Biol Chem. 268(33):24622-8. [PudMed:8227020]
(143) Goldstein, et al. (1993). In vitro antimicrobial activity of a new antibiotic, MDL 62,879 (GE2270 A). Antimicrob Agents Chemother. 37(4):741-5. [PudMed:8494369]
(144) King, et al. (1993). In vitro activity of MDL 62,879 (GE2270 A) against aerobic gram-positive and anaerobic bacteria. Antimicrob Agents Chemother. 37(4):746-9. [PudMed:8494370]
(145) Boeck, et al. (1992). A10255, a complex of novel growth-promoting thiopeptide antibiotics produced by a strain of Streptomyces gardneri. Taxonomy and fermentation studies. J Antibiot (Tokyo). 45(8):1222-30. [PudMed:1399842]
(146) Boeck, et al. (1992). Biosynthesis of thiopeptide antibiotic A10255 in stirred reactors using a chemically defined medium supplemented with continuous nutrient feeds. J Antibiot (Tokyo). 45(8):1278-85. [PudMed:1399849]
(147) Favret, et al. (1992). Biosynthesis of thiopeptide antibiotic A10255: incorporation of isotopically-labeled precursors. J Antibiot (Tokyo). 45(9):1499-511. [PudMed:1429236]
(148) Favret, et al. (1992). Effect of cobalt and cyanocobalamin on biosynthesis of A10255, a thiopeptide antibiotic complex. J Antibiot (Tokyo). 45(11):1809-11. [PudMed:1468992]
(149) Tung, et al. (1992). In vitro effects of the thiopeptide A10255 on ruminal fermentation and microbial populations. J Dairy Sci. 75(9):2494-503. [PudMed:1452854]
(150) Selva, et al. (1991). Antibiotic GE2270 a: a novel inhibitor of bacterial protein synthesis. I. Isolation and characterization. J Antibiot (Tokyo). 44(7):693-701. [PudMed:1908853]
(151) Aoki, et al. (1991). Cyclothiazomycin, a novel polythiazole-containing peptide with renin inhibitory activity. Taxonomy, fermentation, isolation and physico-chemical characterization. J Antibiot (Tokyo). 44(6):582-8. [PudMed:2071486]
(152) Li, et al. (1991). Transcriptional organization and regulation of the nosiheptide resistance gene in Streptomyces actuosus. J Ind Microbiol. 8(1):1-12. [PudMed:1367329]
(153) Li, et al. (1990). Nucleotide sequence and transcriptional analysis of the nosiheptide-resistance gene from Streptomyces actuosus. Gene. 91(1):9-17. [PudMed:2401410]
(154) Mocek, et al. (1989). 1H and 13C NMR assignments of the thiopeptide antibiotic nosiheptide. J Antibiot (Tokyo). 42(11):1643-8. [PudMed:2584148]
(155) Matsumoto, et al. (1989). Isolation and characterization of thioxamycin. J Antibiot (Tokyo). 42(10):1465-9. [PudMed:2808134]
(156) Dary, et al. (1989). Cloning of a nosiheptide-resistant gene from Streptomyces actuosus. C R Acad Sci III.. 308(2):35-41. [PudMed:2493312]
(157) Biskupiak, et al. (1988). Neoberninamycin, a new antibiotic produced by Micrococcus luteus. J Antibiot (Tokyo). 41(5):684-7. [PudMed:3384754]
(158) Dosch, et al. (1988). Molecular cloning of the nosiheptide resistance gene from Streptomyces actuosus ATCC 25421. Biochem Biophys Res Commun. 156(1):517-23. [PudMed:2845982]
(159) Spedding, et al. (1984). Identification of the altered ribosomal component responsible for resistance to micrococcin in mutants of Bacillus megaterium. Eur J Biochem. 140(3):453-9. [PudMed:6144543]
(160) Cromwell, et al. (1984). Efficacy of thiopeptin as a growth promotant for growing barrows and gilts--a cooperative study. J Anim Sci. 59(4):892-5. [PudMed:6511682]
(161) Cromwell, et al. (1984). Efficacy of nosiheptide as a growth promotant for growing-finishing swine--a cooperative study. J Anim Sci. 59(5):1125-8. [PudMed:6511687]
(162) Gauze, et al. (1983). Formation of an antibiotic of the siomycin group by a Streptomyces corchorusii 1401 culture. Antibiotiki. 28(9):643-7. [PudMed:6638977]
(163) Hensens, et al. (1983). Total structure of the highly modified peptide antibiotic components of thiopeptin. J Antibiot (Tokyo). 36(7):814-31. [PudMed:6885636]
(164) Hensens, et al. (1983). 13C NMR study of thiostrepton and thiopeptin components. J Antibiot (Tokyo). 36(7):832-45. [PudMed:6885637]
(165) Stutz, et al. (1983). Effect of the antibiotic thiopeptin on Clostridium perfringens and growth and feed efficiency of broiler chicks. Poult Sci. 62(8):1633-8. [PudMed:6314314]
(166) Thompson, et al. (1982). The mode of action of berninamycin and mechanism of resistance in the producing organism, Streptomyces bernensis. J Gen Microbiol. 128(4):875-84. [PudMed:6181185]
(167) Tori, et al. (1981). Structures of siomycin-B and -C and thiostrepton-B determined by NMR spectroscopy and carbon-13 signal assignments of siomycins, thiostreptons, and thiopeptin-B. J Antibiot (Tokyo). 34(1):124-9. [PudMed:7251503]
(168) Cundliffe, et al. (1981). Concerning the mode of action of micrococcin upon bacterial protein synthesis. Eur J Biochem. 118(1):47-52. [PudMed:6116602]
(169) Cundliffe, et al. (1981). The mode of action of nosiheptide (multhiomycin) and the mechanism of resistance in the producing organism. J Gen Microbiol. 126(1):185-92. [PudMed:7038038]
(170) Muir, et al. (1981). Prevention of induced lactic acidosis in cattle by thiopeptin. J Anim Sci. 52(3):635-43. [PudMed:7263532]
(171) Takebe, et al. (1981). Inhibition of ureolysis in rat intestine with thiopeptin and bicyclomycin in vivo and in vitro (author's transl). Yakugaku Zasshi. 101(12):1124-8. [PudMed:7338799]
(172) Tokura, et al. (1981). Water-soluble siomycin-A derivatives. Preparation, chemical structures and biological properties of half-esters of the peptide antibiotic. J Antibiot (Tokyo). 34(7):800-10. [PudMed:7287582]
(173) Cundliffe, et al. (1981). The mode of action of nosiheptide (multhiomycin) and the mechanism of resistance in the producing organism. J Gen Microbiol. 126(1):185-92. [PudMed:7038038]
(174) Shoji, et al. (1981). Structural studies on thiocillins I, II and III (studies on antibiotics from the genus Bacillus XXIX). J Antibiot (Tokyo). 34(9):1126-36. [PudMed:7328054]
(175) Tokura, et al. (1980). The structure of siomycin-D1, peptide antibiotic isolated from Streptomyces sioyaensis. J Antibiot (Tokyo). 33(12):1563-7. [PudMed:7251492]
(176) Thompson, et al. (1980). Resistance to thiostrepton, siomycin, and sporangiomycin in actinomycetes that produce them. J Bacteriol. 142(2):455-61. [PudMed:6155371]
(177) Benazet, et al. (1980). Effect of nosiheptide as a feed additive in chicks on the quantity, duration, prevalence of excretion, and resistance to antibacterial agents of Salmonella typhimurium; on the proportion of Escherichia coli and other coliforms resistant to antibacterial agents; and on their degree and spectrum of resistance. Poult Sci. 59(7):1405-15. [PudMed:6994088]
(178) Muir, et al. (1980). Thiopeptin for the prevention of ovine lactic acidosis induced by diet change. J Anim Sci. 51(5):1182-8. [PudMed:7204268]
(179) Muir, et al. (1980). Control of wheat-induced lactic acidosis in sheep by thiopeptin and related antibiotics. J Anim Sci. 50(3):547-53. [PudMed:7364689]
(180) Kezar, et al. (1979). Effect of thiopeptin and sodium bicarbonate on the prevention of lactic acidosis induced in sheep. J Anim Sci. 49(5):1396-402. [PudMed:44287]
(181) Tori, et al. (1979). 1H NMR spectral evidence for the structure and conformation of peptide antibiotic siomycin-A. J Antibiot (Tokyo). 32(10):1072-7. [PudMed:528371]
(182) Wienen, et al. (1979). Ribosomal protein alterations in thiostrepton- and Micrococcin-resistant mutants of Bacillus subtilis.. Biol Chem.. 254(16):8031-41.. [PudMed:112097]
(183) Endo, et al. (1978). Identity of multhiomycin with nosiheptide. J Antibiot (Tokyo). 31(6):623-5. [PudMed:681244]
(184) Liesch, et al. (1977). Berninamycin. 3. Total structure of berninamycin A1,2. J Am Chem Soc. 99(5):1645-6. [PudMed:839013]
(185) Takano, et al. (1977). Microbiological assay of thiopeptin in broiler rations. J Assoc Off Anal Chem. 60(1):206-9. [PudMed:833096]
(186) Liesch, et al. (1976). Berninamycin. 2. Products of acidic hydrolysis, methanolysis, and acetolysis of berninamycin A1. J Am Chem Soc. 98(25):8237-49. [PudMed:993523]
(187) Liesch, et al. (1976). Letter: Berninamycin. I. The structure of berninamycinic acid. J Am Chem Soc. 98(1):299-300. [PudMed:1244374]
(188) Liou, et al. (1976). Inhibition by thiopeptin of bacterial protein synthesis. Jpn J Microbiol. 20(3):233-40. [PudMed:787605]
(189) Smith, et al. (1976). A micrococcin-resistant mutant of Bacillus subtilis: localization of resistance to the 50s subunit. Mol Gen Genet. 144(3):231-3. [PudMed:818502]
(190) Shoji, et al. (1976). Isolation of three new antibiotics, thiocillins I, II and III, related to micrococcin P. Studies on antibiotics from the genus Bacillus. VIII. J Antibiot (Tokyo). 29(4):366-74. [PudMed:819410]
(191) Cundliffe, et al. (1975). Inhibition of ribosomal A site functions by sporangiomycin and micrococcin. Antimicrob Agents Chemother. 8(1):1-4. [PudMed:809000]
(192) Dixon, et al. (1975). Properties of the ribosomes of antibiotic producers: effects thiostrepton and micrococcin on the organisms which produce them. Antimicrob Agents Chemother. 7(6):850-5. [PudMed:1155929]
(193) Otaka, et al. (1974). Micrococcin: acceptor-site-specific inhibitor of protein synthesis. Eur J Biochem. 50(1):101-6. [PudMed:4615898]
(194) Wakisaka, et al. (1973). Fermentative preparation of S35-siomycin, a sulfur-containing peptide antibiotic. J Antibiot (Tokyo). 26(2):104-6. [PudMed:4781282]
(195) Watanabe, et al. (1972). Interaction of siomycin with the acceptor site of Escherichia coli ribosomes. J Mol Biol. 67(3):443-57. [PudMed:4558100]
(196) Celma, et al. (1972). Failure of fusidic acid and siomycin to block ribosomes in the pretranslocated state. Biochem Biophys Res Commun. 48(5):1240-6. [PudMed:4560008]
(197) Mine, et al. (1972). Thiopeptin, a new feed-additive antibiotic: biological studies and field trials. Antimicrob Agents Chemother. 1(6):496-503. [PudMed:4680812]
(198) Muramatsu, et al. (1972). Quinoline derivatives as degradation products from antibiotic thiopeptin B. J Antibiot (Tokyo). 25(9):537-8. [PudMed:4645950]
(199) Miyairi, et al. (1972). Thiopeptin, a new feed additive antibiotic: microbiological and chemical studies. Antimicrob Agents Chemother. 1(3):192-6. [PudMed:5045467]
(200) Yagi, et al. (1971). Stimulative effect of elemental sulfur on siomycin production by Streptomyces sioyaensis. Appl Microbiol. 22(2):153-6. [PudMed:4938098]
(201) Modolell, et al. (1971). Inhibition by siomycin and thiostrepton of both aminoacyl-tRNA and factor G binding to ribosomes. Proc Natl Acad Sci U S A. 68(8):1796-800. [PudMed:4331558]
(202) Modolell, et al. (1971). Ribosomes, G-factor and siomycin. Nat New Biol. 230(12):109-12. [PudMed:4927374]
(203) Kinoshita, et al. (1971). Inhibition by thiopeptin of ribosomal functions associated with T and G factors. Biochem Biophys Res Commun. 44(4):859-63. [PudMed:4942119]
(204) Watanabe, et al. (1971). Effect of siomycin on the acceptor site of Escherichia coli ribosomes. Biochem Biophys Res Commun. 45(3):728-34. [PudMed:4942724]
(205) Watanabe, et al. (1971). Effect of siomycin on the G factor dependent GTP hydrolysis by Escherichia coli ribosomes. FEBS Lett. 13(5):267-268. [PudMed:11945683]
(206) Tanaka, et al. (1971). On the mode of action of multhiomycin. II. Effects of multhiomycin on phe-tRNA binding to ribosomes and on other steps in protein synthesis. J Antibiot (Tokyo). 24(8):537-42. [PudMed:5092788]
(207) Tanaka, et al. (1971). Inhibition by multhiomycin of T factor- and GTP-dependent binding of phenylalanyl-tRNA to ribosomes and GTP hydrolysis associated with it. J Biochem. 69(6):1127-30. [PudMed:4933400]
(208) Miyairi, et al. (1970). Studies on thiopeptin antibiotics. I. Characteristics of thiopeptin B. J Antibiot (Tokyo). 23(3):113-9. [PudMed:5453305]
(209) Tanaka, et al. (1970). A new antibiotic, multhiomycin. J Antibiot (Tokyo). 23(5):231-7. [PudMed:5423664]
(210) Tanaka, et al. (1970). On the mode of action of multhiomycin. I. Effects of multhiomycin on macromolecular syntheses. J Antibiot (Tokyo). 23(8):401-7. [PudMed:4989221]
(211) Reusser, et al. (1969). Mode of action of berninamycin. An inhibitor of protein biosynthesis. Biochemistry. 8(8):3303-8. [PudMed:4980191]
(212) Hall, et al. (1966). Chemistry of micrococcin P. X. Proton magnetic resonance spectrum of dimethyl micrococcinate, and the probable mode of biosynthesis of micrococcinic acid. J Chem Soc Perkin 1. 16:1371-3. [PudMed:4287648]
(213) Clark, et al. (1966). Chemistry of micrococcin P. VII. Dimethyl micrococcinate and some synthetic pyridine-polythiazole carboxylic esters. J Chem Soc Perkin 1. 16:1354-6. [PudMed:5949778]
(214) Hall, et al. (1966). Chemistry of micrococcin P. 8. A method for the degradation of thiazole-4-carboxylic acids. J Chem Soc Perkin 1. 16:1357-60. [PudMed:5949779]
(215) James, et al. (1966). Chemistry of micrococcin P. IX. The crystal and molecular structure of micrococcinic acid bis-4-bromoanilide. J Chem Soc Perkin 1. 16:1361-71. [PudMed:5949780]
(216) ABRAHAM, et al. (1956). Probable identity of an antibiotic produced by a spore-bearing bacillus of the B. pumilus group with micrococcin. Nature. 178(4523):44-5. [PudMed:13334526]
(217) KELLY, et al. (1952). Culture media for large-scale production of micrococcin. J Gen Microbiol. 6(1-2):41-6. [PudMed:14927849]
(218) HEATLEY, et al. (1952). The assay of micrococcin, an almost insoluble antibiotic. J Gen Microbiol. 6(1-2):30-40. [PudMed:14927848]
(219) HEATLEY, et al. (1952). The effect on experimental tuberculosis and other infections of a micrococcin-triton solution. Br J Exp Pathol. 33(2):105-22. [PudMed:14935076]
(220) HEATLEY, et al. (1951). The preparation and some properties of purified micrococcin. Biochem J. 50(2):247-53. [PudMed:14904401]
(221) MARKHAM, et al. (1951). The effect on experimental tuberculosis of the intravenous injection of micrococcin. Br J Exp Pathol. 32(4):353-65. [PudMed:14886495]
(222) SANDERS, et al. (1951). The behaviour of intravenously injected particles of carbon and micrococcin in normal and tuberculous tissue. Br J Exp Pathol. 32(5):452-7. [PudMed:14886509]
(223) SU, et al. (1948). Micrococcin, an antibacterial substance formed by a strain of Micrococcus. Br J Exp Pathol. 29(5):473-81. [PudMed:18123292]
(224) Jiang, et al. (). LC Determination of Nosiheptide in Swine Kidney and Liver. Chromatographia. 71(1-2): 131-134. [on SciFinder(R)]
(225) Ammer, et al. (2010). Total syntheses of the thiopeptides amythiamicin C and D. Chemistry. 16(47): 14083-14093. [on SciFinder(R)]
(226) Arndt, et al. (2009). Thiopeptide Antibiotic Biosynthesis. Angew. Chem., Int. Ed.. 48(37): 6770-6773. [on SciFinder(R)]
(227) Gorugantula, et al. (2009). Syntheses of fused pyrroloheterocycles, isatins, approach towards the indole fragment of nosiheptide and a base-mediated formation of 3-hydroxycarbazoles. . 262 pp. [on SciFinder(R)]
(228) Lu, et al. (2009). Aza-Wittig-supported synthesis of the A ring of nosiheptide. [Erratum to document cited in CA152:037890]. Angew. Chem., Int. Ed.. 48(49): 9211. [on SciFinder(R)]
(229) Liao, et al. (2009). Thiopeptide Biosynthesis Featuring Ribosomally Synthesized Precursor Peptides and Conserved Posttranslational Modifications. Chem. Biol. (Cambridge, MA, U. S.). 16(2): 141-147. [on SciFinder(R)]
(230) Tojo, et al. (2008). Preparation of cyclic thiopeptides (NQ3323-A derivatives) and their pharmaceutical compositions for multidrug-resistant bacteria. . 67pp.. [on SciFinder(R)]
(231) Nicolaou, et al. (2008). Total syntheses of amythiamicins A, B and C. Chem. Commun. (Cambridge, U. K.). (23): 2632-2634. [on SciFinder(R)]
(232) Gartel, et al. (2008). Identification and use of agents that modulate oncogenic transcription agent activity. . 54pp. [on SciFinder(R)]
(233) Singh, et al. (2008). Biosynthetic studies of Nocathiacin-I. Tetrahedron Lett. 49(43): 6265-6268. [on SciFinder(R)]
(234) Lu, et al. (2008). Development of a Hetero-Diels-Alder reaction to synthesize 3-hydroxypyridines and its application toward the total synthesis of nosiheptide. . . [on SciFinder(R)]
(235) Kazami, et al. (2007). Preparation of O-acyl-QN3323-A oxime thiopeptide compounds as antibacterial agents. . 40pp.. [on SciFinder(R)]
(236) Beltrametti, et al. (2007). Protoplast fusion and gene recombination in the uncommon Actinomycete Planobispora rosea producing GE2270. J Antibiot (Tokyo). 60(7): 447-454.. [on SciFinder(R)]
(237) Taddei, et al. (2007). An expedient approach to the 2,3,5,6-tetrasubstituted pyridine core of nosiheptide using oxidative cleavage of 2,3,5,8-tetrasubstituted quinolines. ARKIVOC (Gainesville, FL, U. S.). (11): 56-63. [on SciFinder(R)]
(238) Mori, et al. (2007). Total synthesis of siomycin A. Tetrahedron Lett.. 48(8): 1331-1335. [on SciFinder(R)]
(239) Belhadj, et al. (2006). Synthesis of the 'northern-hemisphere' fragments of the thiopeptide antibiotic nosiheptide. Synlett. (18): 3033-3036. [on SciFinder(R)]
(240) Heckmann, et al. (2005). Synthesis of the heterocyclic core of the GE2270 antibiotics and structure elucidation of a major degradation product. Angew. Chem., Int. Ed. 44(8): 1199-1201. [on SciFinder(R)]
(241) Bagley, et al. (2005). One-Pot Multistep Bohlmann-Rahtz Heteroannulation Reactions: Synthesis of Dimethyl Sulfomycinamate. J. Org. Chem.. 70(4): 1389-1399. [on SciFinder(R)]
(242) Bagley, et al. (2005). Synthesis of methyl sulfomycinate, sulfomycinic amide and sulfomycinine, degradation products of the sulfomycin thiopeptide antibiotics. Tetrahedron. 62(1): 66-72. [on SciFinder(R)]
(243) Bagley, et al. (2004). First synthesis of an amythiamicin pyridine cluster. Chem. Commun. (Cambridge, U. K.). (1): 102-103. [on SciFinder(R)]
(244) Hudyma, et al. (2004). Preparation of nocathiacin O-derivatives. . 53 pp. [on SciFinder(R)]
(245) Naidu, et al. (2004). Organic reactions in frozen water: Michael addition of amines and thiols to the dehydroalanine side chain of nocathiacins. Tetrahedron Lett. 45(5): 1059-1063. [on SciFinder(R)]
(246) Kayano, et al. (2004). Convenient synthesis of the main tridehydropentapeptide skeleton for a macrocyclic antibiotic, sulfomycin I. Chem. Lett.. 33(1): 72-73 . [on SciFinder(R)]
(247) Endoh, et al. (2003). Asymmetric synthesis of the main pyridine skeleton for a macrobicyclic antibiotic, cyclothiazomycin. Bull. Chem. Soc. Jpn.. 76(3): 643-644. [on SciFinder(R)]
(248) Santamaria, et al. (2003). Radamicin, its production with Streptomyces, and its use as inducer of tipA promotor. . 29 pp. [on SciFinder(R)]
(249) Bagley, et al. (2003). Synthesis of Dimethyl Sulfomycinamate. Org. Lett.. 5(23): 4421-4424. [on SciFinder(R)]
(250) Kamigiri, et al. (2002). Thiopeptide compounds suitable for treatment of multidrug resistant bacteria infection. . 27 pp.. [on SciFinder(R)]
(251) Saito, et al. (2002). Convenient synthesis of the main dehydrohexapeptide skeleton constituting a macrocyclic antibiotic, berninamycin A. Chem. Lett.. 1098-1099. [on SciFinder(R)]
(252) Shin, et al. (2002). Novel synthesis of the main central 2,3,6-trisubstituted pyridine skeleton [fragment A-B-C] of a macrobicyclic antibiotic, cyclothiazomycin. Bull. Chem. Soc. Jpn. 75(7): 1583-1596. [on SciFinder(R)]
(253) Constantine, et al. (2002). Conformation and absolute configuration of nocathiacin I determined by NMR spectroscopy and chiral capillary electrophoresis. [Erratum to document cited in CA137:140768]. J. Am. Chem. Soc. 124(49): 14810. [on SciFinder(R)]
(254) Li, et al. (2002). Nocathiacin antibiotics prepared by biotransformation or chemical methods. . 53 pp.. [on SciFinder(R)]
(255) Naidu, et al. (2002). Synthesis and Antibacterial Activity of Novel Nocathiacin I Analogs. . . [on SciFinder(R)]
(256) Yonezawa, et al. (2002). A synthesis of a hydroxyvaline-derived thiazole-4-carboxylate constituting an antibiotic, thiocillin I. Heterocycles. 57(5): 903-908 . [on SciFinder(R)]
(257) Yun Bong-Sik, et al. (2001). Absolute stereochemistry and solution conformation of promothiocins. Tetrahedron. 57(48):9683-9687. [on SciFinder(R)]
(258) Yamada, et al. (2001). Useful synthesis of the main dehydrohexapeptide segment of a macrocyclic antibiotic, berninamycin B. Chem. Lett.. 102-103. [on SciFinder(R)]
(259) Okabe, et al. (2001). Convenient synthesis of a central 2,3,6-trisubstituted pyridine skeleton of a macrobicyclic antibiotic, cyclothiazomycin. Chem. Lett.. (5):380-381. [on SciFinder(R)]
(260) Bagley, et al. (2000). Total Synthesis of the Thiopeptide Promothiocin A. J. Am. Chem. Soc.. 122(14):3301-3313. [on SciFinder(R)]
(261) Ashraf-Khorassani, et al. (2000). Analysis of the sulfomycin component of alexomycin in animal feed by enhanced solvent extraction and supercritical fluid chromatography. J Biochem Biophys Methods. 43(1-3):147-56. [on SciFinder(R)]
(262) Leet, et al. (2000). Nocathiacin antibiotics. . 55 pp. [on SciFinder(R)]
(263) Li, et al. (2000). Halo- or hydroxy-substituted nocathiacin antibiotics. . 43 pp. [on SciFinder(R)]
(264) Li, et al. (2000). Nocathiacin antibiotic derivatives prepared by microbial biotransformation. . 50 pp. [on SciFinder(R)]
(265) Nadkarni, et al. (1999). Production of methylsulfomycin I by fermentation with Actinomycete strain HIL Y-94, 20704. . 37 pp. [on SciFinder(R)]
(266) Moody, et al. (1998). Studies on thiopeptide antibiotics. Synthesis of an oxazole-thiazole-pyridine fragment related to promothiocin A. Synlett. 4:361-362. [on SciFinder(R)]
(267) Moody, et al. (1998). The first synthesis of promothiocin A. Chem. Commun. (Cambridge). (18):2049-2050. [on SciFinder(R)]
(268) Muraoka, et al. (1998). Preparation of water-soluble amythiamicin amido compounds as bactericides for methicillin-resistant Staphylococcus aureus (MRSA). . 9 pp. [on SciFinder(R)]
(269) Nadkarni, et al. (1998). Methylsulfomycin I, a process for its production and its use. . 15 pp. [on SciFinder(R)]
(270) Umemura, et al. (1998). Synthesis of a fragment A derivative of an antibiotic, nosiheptide. Bull. Chem. Soc. Jpn.. 71(6): 1391-1396. [on SciFinder(R)]
(271) Martin, et al. (1998). Partial assignment of the 15N NMR spectrum of sulfomycin-I at natural abundance. Magn. Reson. Chem.. 36(9): 635-644. . [on SciFinder(R)]
(272) Smith, et al. (1997). Thiopeptide antibiotics. Drugs Pharm. Sci. 82(Biotechnology of Antibiotics, (2nd Edition)): 393-413. [on SciFinder(R)]
(273) Umemura, et al. (1997). Synthesis of the central heterocyclic skeleton of an antibiotic, A10255. Chem. Lett.. (12): 1203-1204. [on SciFinder(R)]
(274) Takenaga, et al. (1997). Antibacterial emulsions or freeze-dried powders containing amythiamicins for injection. . 6 pp. [on SciFinder(R)]
(275) Umemura, et al. (1997). The synthesis of fragment A of an antibiotic, Nosiheptide. Tetrahedron Lett.. 38(20): 3539-3542. [on SciFinder(R)]
(276) Colombo, et al. (1996). Characterization of the antibiotic GE2270 complex by combined liquid chromatography and mass spectrometry. Rapid Commun. Mass Spectrom. 0(4): 409-412. [on SciFinder(R)]
(277) Lociuro, et al. (1996). Preparation of basic prolineamide derivatives of GE2270 and GE2270-like antibiotics. . 83 pp. [on SciFinder(R)]
(278) Sosio, et al. (1996). An elongation factor Tu (EF-Tu) resistant to the EF-Tu inhibitor GE2270 in the producing organism Planobispora rosea. Mol Microbiol. 22(1): 43-51. [on SciFinder(R)]
(279) Gasmi, et al. (1996). Improvements of HSQC and HMBC experiments by J-modulation, t1-noise reduction and spectral domain selection. Application to the study of nosiheptide. Magn. Reson. Chem. 34(3): 185-190. [on SciFinder(R)]
(280) Shin, et al. (1996). Convenient synthesis of fragment E of antibiotic, nosiheptide. Heterocycles. 43(4): 891-898. [on SciFinder(R)]
(281) Fate, et al. (1996). The biosynthesis of sulfomycin elucidated by isotopic labeling studies. J. Am. Chem. Soc.. 118(46): 11363-11368. . [on SciFinder(R)]
(282) Kelly, et al. (1996). Total Synthesis of Dimethyl Sulfomycinamate. J. Org. Chem.. 61(14): 4623-4633. [on SciFinder(R)]
(283) Kohno, et al. (1996). The structures of sulfomycins II and III. J. Antibiot.. 49(10): 1063-1065. [on SciFinder(R)]
(284) Shimanaka, et al. (1995). Novel antibiotics, amythiamicins. IV. A mutation in the elongation factor Tu gene in a resistant mutant of B. subtilis. J. Antibiot. 48(2): 182-184. [on SciFinder(R)]
(285) Lau, et al. (1995). Biosynthesis of berninamycin: Incorporation of 13C-labeled amino acids. J. Am. Chem. Soc. 117, 7606-7610. [on SciFinder(R)]
(286) Shin, et al. (1995). A convenient synthesis of methyl 2-[2-(1-amino)ethenyl-bithiazolyl]thiazoline-4-carboxylate, an important skeleton of cyclothiazomycin. Chem. Lett. (1):45-46. [on SciFinder(R)]
(287) Koerber-Ple, et al. (1995). Total synthesis of nosiheptide. Synthesis of thiazole fragments. J. Heterocycl. Chem. . 32(4): 1309-1315. [on SciFinder(R)]
(288) Shin, et al. (1995). Syntheses of 2-[(1S,3S)-1-amino-3-carboxy-3-hydroxypropyl]thiazole-4-carboxylic acid and the tripeptide skeleton of nosiheptide containing the acid. Bull. Chem. Soc. Jpn. 68(11): 3151-3160 . [on SciFinder(R)]
(289) Umemura, et al. (1995). A facile synthesis of fragment D of antibiotic, nosiheptide. Synthesis. (11): 1423-1426. [on SciFinder(R)]
(290) Fate, et al. (1995). The biosynthesis of sulfomycin elucidated by isotopic labeling studies. . . [on SciFinder(R)]
(291) Yun, et al. (1994). Thiotipin, a novel thiopeptide with a tipA promoter-inducing activity produced by Streptomyces sp. DT31. Tetrahedron. 50(40): 11659-11664.. [on SciFinder(R)]
(292) Shimanaka, et al. (1994). Novel antibiotics, amythiamicins. I. Taxonomy, fermentation, isolation, physico-chemical properties, and antimicrobial activity. J. Antibiot. 47(6): 668-674. [on SciFinder(R)]
(293) Shimanaka, et al. (1994). Novel antibiotics, amythiamicins. III. Structure elucidations of amythiamicins A, B and C. J. Antibiot. 47(10): 1153-1159. [on SciFinder(R)]
(294) Koerber-Ple, et al. (1994). Synthesis of an unusual 2,3,4-trisubstituted indole derivative found in the antibiotic nosiheptide. J. Chem. Soc., Chem. Commun. (9): 759-760. . [on SciFinder(R)]
(295) Tung, et al. (1993). In vitro effects of a thiopeptide and monensin on ruminal fermentation of soluble carbohydrates. J. Dairy Sci. 6(4): 1083-1090. [on SciFinder(R)]
(296) Kirst, et al. (1993). Fermentative manufacture of Antibiotic A10255 complex. . 33 pp. Cont.-in-part of U.S. Ser. No. 284,229, abandoned. [on SciFinder(R)]
(297) Debono, et al. (1993). The structures of A10255 B, -G, and -J: new thiopeptide antibiotics produced by Streptomyces gardneri. [Erratum to document cited in CA117(15):146817c]. J. Org. Chem. 58(6): 1640. [on SciFinder(R)]
(298) Smith, et al. (1993). 3,4-Dimethylindole-2-carboxylate and 4-(1-hydroxyethyl)quinoline-2-carboxylate activating enzymes from the nosiheptide and thiostrepton producers, Streptomyces actuosus and Streptomyces laurentii. J. Chem. Soc., Chem. Commun.. (21): 1612-1614. [on SciFinder(R)]
(299) Mocek, et al. (1993). Biosynthesis of the modified peptide antibiotic nosiheptide in Streptomyces actuosus. J. Am. Chem. Soc. 115(17): 7557-7568. [on SciFinder(R)]
(300) Smith, et al. (1993). 3,4-Dimethylindole-2-carboxylate and 4-(1-hydroxyethyl)quinoline-2-carboxylate activating enzymes from the nosiheptide and thiostrepton producers, Streptomyces actuosus and Streptomyces laurentii. J. Chem. Soc., Chem. Commun.. (21): 1612-1614. [on SciFinder(R)]
(301) Tung, et al. (1992). In vitro effects of the thiopeptide A10255 on ruminal fermentation and microbial populations. J Dairy Sci. 75(9): 2494-2503. [on SciFinder(R)]
(302) Fujiwara, et al. (1992). Determination of stereochemistry by NMR distance geometry; application to cyclothiazomycin. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu. 34th:267-273. [on SciFinder(R)]
(303) Aoki, et al. (1991). Structure of cyclothiazomycin, a unique polythiazole-containing peptide with renin inhibitory activity. Part 2. Total structure. Tetrahedron Lett. 32(2): 217-220. [on SciFinder(R)]
(304) Okamura, et al. (1989). New antibiotic-producing Streptomyces TT-strain, generated by electrical fusion of protoplasts. J. Ferment. Bioeng. 67(4): 221-225. [on SciFinder(R)]
(305) Ochi, et al. (1989). The tsr gene-coding plasmid pIJ702 prevents thiopeptin from inhibiting ppGpp synthesis in Streptomyces lividans. FEMS Microbiol. Lett.. 61(1-2): 219-223. [on SciFinder(R)]
(306) Boeck, et al. (1988). Antibiotic A10255 complex and factors and their manufacture with Streptomyces garderi. . 66 pp. [on SciFinder(R)]
(307) Abe, et al. (1988). The structures of sulfomycin I and berninamycin A. Tetrahedron Lett. 29, 1401-1404. [on SciFinder(R)]
(308) Houck, et al. (1988). Biosynthesis of the modified peptide antibiotic nosiheptide in Streptomyces actuosus. J. Am. Chem. Soc.. 110(17): 5800-5806. [on SciFinder(R)]
(309) Abe, et al. (1988). The structures of sulfomycin I and berninamycin A. Tetrahedron Lett.. 29(12): 1401-1404. [on SciFinder(R)]
(310) Houck, et al. (1987). Biosynthesis of the modified peptide antibiotic nosiheptide in Streptomyces actuosus. J. Am. Chem. Soc.. 109(4): 1250-1252. . [on SciFinder(R)]
(311) Houck, et al. (1986). Studies on the biosynthesis of the modified-peptide antibiotic, nosiheptide. . 114 pp. [on SciFinder(R)]
(312) Nakanishi, et al. (1986). Construction and characterization of new cloning vectors derived from Streptomyces griseobrunneus plasmid pBT1 and containing amikacin and sulfomycin resistance genes. Plasmid. 15(3): 217-229. [on SciFinder(R)]
(313) Dennis, et al. (1986). Effect of lasalocid, monensin and thiopeptin on rumen protozoa. Res. Vet. Sci.. 41(2): 251-256. [on SciFinder(R)]
(314) Nagaraja, et al. (1986). Effect of lasalocid, monensin and thiopeptin on lactate production from in vitro rumen fermentation of starch. Can. J. Anim. Sci.. 66(1): 129-139. [on SciFinder(R)]
(315) Keller-Juslen, et al. (1984). Antibiotics, pharmaceutical compositions and their use. . 17 pp. Cont.-in-part of U.S. Ser. No. 196,577, abandoned.. [on SciFinder(R)]
(316) Pellegrino, et al. (1984). Berninamycin a as a growth permittant. . 9 pp. [on SciFinder(R)]
(317) Labeda, et al. (1983). Antibiotic nosiheptide. . 21 pp. [on SciFinder(R)]
(318) Baylis, et al. (1983). Combination of thiopeptin and other related sulfur-containing cyclic polypeptide antibiotics with rumen-active diimides to improve ruminant feed efficiency. . 5 pp. [on SciFinder(R)]
(319) Ganguly, et al. (1982). Antibiotics from Micromonospora. . 38-43. [on SciFinder(R)]
(320) Iwakawa, et al. (1982). A facile synthetic approach to the fragment D of antibiotic nosiheptide, 2-[1-amino-3-carboxy-3-hydroxy-(1S,3S)-propyl]thiazole-4-carboxylic acid. Chem. Lett.. (12): 1975-1978. [on SciFinder(R)]
(321) Clayden, et al. (1982). Two-dimensional NMR spectroscopy of siomycin A. Proton-carbon-13 chemical shift correlation. Eur. J. Biochem.. 123(1): 127-131. [on SciFinder(R)]
(322) Nagaraja, et al. (1982). Effect of lasalocid, monensin or thiopeptin on lactic acidosis in cattle. J. Anim. Sci.. 54(3): 649-658. [on SciFinder(R)]
(323) Puar, et al. (1981). Sch 18640. A new thiostrepton-type antibiotic. J. Am. Chem. Soc.. 103(17): 5231-5233. [on SciFinder(R)]
(324) Ishihara, et al. (1981). Decreasing ammonia concentration in domestic animals or fowls. . 7 pp. Cont.-in-part of U.S. Ser. No. 32,253, abandoned. [on SciFinder(R)]
(325) Okabe, et al. (1981). Structure and activity of siomycin and its homologs. . . [on SciFinder(R)]
(326) Rinehart, et al. (1980). Recent biosynthetic studies on antibiotics. J. Nat. Prod. 43, 1-20. [on SciFinder(R)]
(327) Ishimara, et al. (1980). An improved process for preparing multhiomycin. . 6 pp. Division of Brit. 1,543,353. [on SciFinder(R)]
(328) Benazet, et al. (1980). Nosiheptide, a sulfur-containing peptide antibiotic isolated from Streptomyces actuosus 40037. Experientia. 36(4): 414-416. [on SciFinder(R)]
(329) Gillin, et al. (1980). Combination of thiopeptin and rumensin to improve ruminant feed efficiency. . 4 pp. [on SciFinder(R)]
(330) Motoki, et al. (1980). Studies on the structure of antibiotic thiopeptin B. Pept. Chem.. 17th: 13-18. [on SciFinder(R)]
(331) Gill, et al. (1979). Thiopeptin and roughage level for feedlot steers. J. Anim. Sci. 49(5): 1145-1150. [on SciFinder(R)]
(332) Weinstein, et al. (1978). Antibiotic complex from Micromonospora arborensis. . 6 pp. [on SciFinder(R)]
(333) Ishihara, et al. (1978). Multhiomycin for growth stimulation and disease prevention for fish. . 3 pp. [on SciFinder(R)]
(334) Endo, et al. (1978). Identity of multhiomycin with nosiheptide. J. Antibiot.. 31(6): 623-625. [on SciFinder(R)]
(335) Olesker, et al. (1978). Natural abundance nitrogen-15 nuclear magnetic resonance spectroscopic evidence for the structural relation between the peptide antibiotics thiostrepton and siomycin-A. J. Chem. Soc., Chem. Commun.. (14): 577-578. [on SciFinder(R)]
(336) Abe, et al. (1978). Methanolysis products of sulfomycin I. Tetrahedron Lett.. (31): 2791-2794. [on SciFinder(R)]
(337) Hensens, et al. (1978). Total structure of the peptide antibiotic components of thiopeptin by proton and carbon-13 NMR spectroscopy. Tetrahedron Lett.. (39): 3649-3652. [on SciFinder(R)]
(338) Liesch, et al. (1977). Berninamycin. 3. Total structure of berninamycin A. J. Am. Chem. Soc. 99, 1645-1646. [on SciFinder(R)]
(339) Ishihara, et al. (1977). Antibiotic multhiomycin. . 10 pp. [on SciFinder(R)]
(340) Depaire, et al. (1977). Nitrogen-15 NMR spectroscopy of nosiheptide. Determination of the elemental formula and the molecular weight of the antibiotic. Tetrahedron Lett. (16): 1401-1402. [on SciFinder(R)]
(341) Depaire, et al. (1977). Acid and alkaline hydrolysis of the antibiotic nosiheptide. The structure elucidation of five fragments. Tetrahedron Lett.. (16): 1395-1396. [on SciFinder(R)]
(342) Depaire, et al. (1977). The structure relation between the antibiotics nosiheptide and thiostrepton. Tetrahedron Lett.. (16): 1403-1406. [on SciFinder(R)]
(343) Depaire, et al. (1977). Carbon-13 NMR spectroscopy of nosiheptide. Tetrahedron Lett.. (16): 1397-1400. [on SciFinder(R)]
(344) Pascard, et al. (1977). Highly modified cysteine-containing antibiotics. Chemical structure and configuration of nosiheptide. J. Am. Chem. Soc.. 99(19): 6418-6423. [on SciFinder(R)]
(345) Prange, et al. (1977). Structure of nosiheptide, a polythiazole-containing antibiotic. Nature (London). 265(5590): 189-190. [on SciFinder(R)]
(346) Abe, et al. (1977). Acid hydrolysis products of sulfomycin I. Tetrahedron Lett.. (9): 735-736. [on SciFinder(R)]
(347) Chaiet, et al. (1977). Fermentation process for the preparation of sulfomycin. . 6 pp.. [on SciFinder(R)]
(348) Muramatsu, et al. (1977). Amino acids and derivatives of thiazole-4-carboxylic acid as constituents of thiopeptin B. J. Antibiot.. 30(5): 383-387. [on SciFinder(R)]
(349) Tori, et al. (1976). Carbon-13 NMR studies of peptide antibiotics, thiostrepton and siomycin A, the structure relationship. Tetrahedron Lett.. (3): 185-188. [on SciFinder(R)]
(350) Liesch, et al. (1975). Structural studies on the antibiotic, berninamycin A. . 295 pp. [on SciFinder(R)]
(351) Liou, et al. (1975). Alteration of ribosomal protein L5 in a thiopeptin-resistant mutant of Escherichia coli. Biochem. Biophys. Res. Commun.. 65(3): 1096-1101. [on SciFinder(R)]
(352) Smith Issar, et al. (1973). Location of the SPO2 attachment site and the bryamycin resistance marker on the Bacillus subtilis chromosome. J. Bacteriol. 114(3): 1138-1142.. [on SciFinder(R)]
(353) Tanaka, et al. (1973). Antibiotic multhiomycin production by Streptomyces. . 7 pp. [on SciFinder(R)]
(354) Liou, et al. (1973). Ribosomes of a thiopeptin-resistant mutant of Escherichia coli. J. Antibiot.. 26(12): 711-716. [on SciFinder(R)]
(355) Bergy, et al. (1972). Antibiotic berninamycin. . 11 pp.. [on SciFinder(R)]
(356) Ballesta, et al. (1972). Effect of thiostrepton and siomycin on elongation factors G- and T-dependent GTP hydrolysis. Fed. Eur. Biochem. Soc. Meet., [Proc.]. 281-289. [on SciFinder(R)]
(357) Modolell, et al. (1972). Action of siomycin on binding of factor G and aminoacyl-tRNA to Escherichia coli ribosomes. . . [on SciFinder(R)]
(358) Miyairi, et al. (1972). Thiopeptin, a new feed additive antibiotic. Microbiological and chemical studies. Antimicrob. Agents Chemother.. 1(3): 192-196. [on SciFinder(R)]
(359) Tanaka, et al. (1970). Mode of action of siomycin. J. Antibiot.. 23(1): 13-19. [on SciFinder(R)]
(360) Tanaka, et al. (1970). Effect of siomycin on protein synthesizing activity of Escherichia coli ribosomes. Biochem. Biophys. Res. Commun.. 39(6): 1189-1193. [on SciFinder(R)]
(361) Ebata, et al. (1969). Siomycin. IV. Acyl derivatives of siomycin A. J. Antibiot. 22(10): 506-507. [on SciFinder(R)]
(362) Ebata, et al. (1969). Siomycin. II. Composition and degradation products of siomycin A. J. Antibiot.. 22(9): 423-433. [on SciFinder(R)]
(363) Ebata, et al. (1969). Siomycin. V. Derivatives of siomycin A prepared from thiolcarboxylic acids. J. Antibiot.. 22(10): 451-456. [on SciFinder(R)]
(364) Ebata, et al. (1969). Siomycin. III. Structural features of siomycin A. J. Antibiot.. 22(9): 434-441. [on SciFinder(R)]
(365) Ebata, et al. (1969). Siomycin. I. Physicochemical properties of siomycins A, B, and C. J. Antibiot.. 22(8): 364-368. [on SciFinder(R)]
(366) (1968). Biochemical studies on Streptomyces sioyaensis. III. Inhibitory effect of L-cysteine and its analogs on siomycin formation by Streptomyces sioyaensis. Agr. Biol. Chem. (Tokyo). 32(2): 252-253. [on SciFinder(R)]
(367) Ebata, et al. (1967). Amino acid composition of a siomycin-producing streptomycete. Shionogi Kenkyusho Nempo. 17: 122-126. [on SciFinder(R)]
(368) Kimura, et al. (1967). Biochemical studies on streptomyces sioyaensis II. Mechanism of the inhibitory effect of glucose on siomycin formation. Agric. Biol. Chem.. 31(7): 845-852. [on SciFinder(R)]
(369) Kimura, et al. (1967). Biochemical studies on Streptomyces sioyaensis. I. Formation of siomycin by the resting cell system of Streptomyces sioyaensis. Agric. Biol. Chem.. 31(7): 837-844. [on SciFinder(R)]
(370) Bodanszky, et al. (1963). The establishment of the identity of thiostrepton with thiactin (bryamycin). J. Antibiot., Ser. A. Ser. A 16(2): 76-79. [on SciFinder(R)]
(371) Bodanszky, et al. (1963). The establishment of the identity of thiostrepton with thiactin (bryamycin). J. Antibiot., Ser. A. Ser. A 16(2): 76-79. [on SciFinder(R)]
(372) Jones, et al. (1958). In vitro observations on A-8506 (Bryamycin). Antibiot. Chemother. 8: 387-391. [on SciFinder(R)]
(373) Heinemannn, et al. (1958). Thiactin (bryamycin). . . [on SciFinder(R)]
(374) Jones, et al. (1958). In vitro observations on A-8506 (Bryamycin). Antibiot. Chemother. (Washington, D. C.). 8: 387-391. [on SciFinder(R)]
(375) Heinemannn, et al. (1958). Thiactin (bryamycin). . . [on SciFinder(R)]
(376) Heinemann, et al. (1957). Thiactin (bryamycin). . . [on SciFinder(R)]
(377) Heinemann, et al. (1957). Thiactin (bryamycin). . . [on SciFinder(R)]
(378) Cron, et al. (1956). Bryamycin, a new antibiotic. Antibiot. Chemother. (Washington, D. C.). 6: 63-67. [on SciFinder(R)]
(379) Reedy, et al. (1956). In vitro sensitivity of bacteria to novobiocin, bryamycin, oleandomycin, vancomycin, amphomycin, bacitracin, and synnematin B. Antibiot Annu. 483-5. [on SciFinder(R)]