tRNAcc 1.0 User Guide

Version: 1.0

Last revision Date: 20/08/2005; 26/09/2005; 07/12/2005

Author: Hong-Yu Ou ¹, Kumar Rajakumar ¹,2 *

1. Department of Infection, Immunity and Inflammation, Leicester Medical School, University of Leicester, Leicester LE1 9HN, United Kingdom.

2. Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, United Kingdom.

All rights reserved by Department of Infection, Immunity and Inflammation, Leicester Medical School, University of Leicester, Leicester LE1 9H, United Kingdom

* Contact: Kumar Rajakumar, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, United Kingdom.

E-mail: kr46@le.ac.uk (K. RAJAKUMAR)

hyo1@le.ac.uk or tjohy@hotmail.com (H.-Y. Ou)
Table of contents

1. Disclaimer ..3

2. tRNAcc package ..3

3. Program (I): IdentifyIsland ..9

4. Program (II): TabulateIsland ...13

5. Program (III): ExtractFlank ...15

6. Program (IV): DNAnalyser ...17

7. Program (V): GenomeSubstrator ...22

8. Program (VI): LocateHotspots ..25

9. Application of tRNAcc to interrogate CGI-defined non-tRNA hotspots28
1. Disclaimer

trNAcc 1.0 is freely available to academic users for not-for-profit purposes provided that
the original work is properly cited. However, no re-distribution is allowed without written
permission of the authors. The program for the MS Windows platform has been scanned by Sophos
Anti-Virus Version 3.98.0, and has been shown to be free of viruses. This program, however, is
distributed without any warranty, without even the implied warranty of merchantability or fitness
for any purpose. The responsibility for any adverse consequences from the use of the program or
documents or any files created by use of the program lies solely with the users of the program and
not with authors of the program.

2. trNAcc package

A software package called trNAcc 1.0 is designed to facilitate the process of investigating
the contents and contexts analysis of tRNA sites in multiple closely related bacterial genomes. It is
comparative analysis of the contents and contexts of tRNA sites in closely related bacteria. Nucleic

trNAcc 1.0 comprises a suite of individual tools listed in Table 1. The software is divided
into three sections by function: (I) Identification of the tRNA-associated GIs and their boundaries
(II) Design of primers specific to conserved UF and DF regions, and (III) Analysis of putative
islands for evidence of foreign origin. The open source codes written in C++, Perl or Bioperl
modules were tested under MS Windows 2000. The C++ programs were compiled by using Dev-
C++ 4.9 available at http://www.bloodshed.net/. The following directory structure is set up by
installing trNAcc:

trNAcc\input_data
trNAcc\output_data
trNAcc\temp_data
In this user guide, we take the primary tRNAcc analysis for the four fully sequenced *E. coli* and *Shigella* genomes as an example (Fig. 1): *E. coli* K-12 MG1655 (Refseq accession number: NC_000913.2), uropathogenic *E. coli* CFT073 (NC_004431), enterohaemorrhagic *E. coli* O157:H7 EDL933 (NC_002655) and *S. flexneri* 2a Sf301 (NC_004337). The MG1655 genome is served as the reference template. Demonstrations of the inputs and outputs for the software are given in the subdirectory tRNAcc\input_data and tRNAcc\output_data, respectively. See the lists in Table 2.

Table 1. Stand-alone tools developed and utilised for high throughput analyses of the contents and contexts of tRNA genes in bacterial genomes

<table>
<thead>
<tr>
<th>Software tool</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Island identification</td>
<td>Identify putative islands based on conserved flanking blocks identified using the multiple aligner Mauve 1.2.2 (Darling, et al. 2004, Genome Res., 14, 1394-1403)</td>
<td>This work</td>
</tr>
<tr>
<td>IdentifyIsland</td>
<td>Tabulate the islands identified when analysing different subsets of genomes</td>
<td>This work</td>
</tr>
<tr>
<td>TabulateIsland</td>
<td>Locate proposed hotspots in un-annotated chromosomal sequences using BLASTN-based searches</td>
<td>This work</td>
</tr>
<tr>
<td>LocateHotspots</td>
<td>Generate multi-FASTA files containing the upstream or downstream flanking regions for the identified islands</td>
<td>This work</td>
</tr>
<tr>
<td>ExtractFlank</td>
<td>Design conserved PCR primers for the upstream or downstream flanking regions across multiple bacterial genomes being compared. This program is available at http://www.umsl.edu/services/kellogg/primaclade.html</td>
<td>Gadberry, et al. 2005 Bioinformatics, 21, 1263-1264</td>
</tr>
<tr>
<td>Primaclade</td>
<td>Calculate the GC content and dinucleotide bias of identified islands, and the negative cumulative GC profile of genomes</td>
<td>This work</td>
</tr>
<tr>
<td>DNAAnalyser</td>
<td>High throughput BLASTN-based comparison of CDS sequences against test genomes to identify strain-specific CDS based on the level of nucleotide similarity</td>
<td>This work</td>
</tr>
<tr>
<td>GenomeSubstrator</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These programs can also be used for the generic identification and preliminary characterization of putative genomic islands located at other user-specified hotspots and for the analysis of cognate flanking sequences.
Extract 4-kb UCB and 250-kb DCB for individual tRNA gene in each genome

Find conserved regions in UCB and DCB by using multiple sequence aligner Mauve

Identify the tRNA gene-borne GI in each genome

Examine candidate islands with the aid of TabulateIsland

Retain GI > 1kb

Exclude tRNA sites falsely identified as bearing GI because of closely clustered tRNA genes

Examine GI using coliBASE assigned differing sizes depending on the genome subset analysed. Select the appropriate GI size.

Final list and selected boundaries of tRNA-associated islands

Make multi-FASTA files containing the 2-kb UF and DF regions for each tRNA gene using ExtractFlank

Design primer pairs for each tRNA gene based on consensus regions using Primacleade

Screen island-occupied tRNA sites in test strains using in vitro tRIP

List of MG1655 tRNA genes

Candidate islands based on Set 4

Candidate islands based on Set 3I

Candidate islands based on Set 3II

Candidate islands based on Set 3III

Set 4

MG1655, CFT073, EDL933, Sf301

Set 3I

MG1655, CFT073, EDL933

Set 3II

MG1655, EDL933, Sf301

Set 3III

MG1655, CFT073, Sf301

Genome sequences being compared (Reference genome: MG1655)
Figure 1. Flowchart depicting the high-throughput strategy developed and utilised to analyse the contents and contexts of tRNA genes in the four sequenced *Escherichia coli* and *Shigella* genomes. The method was termed tRNAcc. Four stand-alone tools, indicated in bold italic font in the figure, were employed to identify islands (IdentifyIsland, TabulateIsland) and design primers (ExtractFlank, Primaclade) corresponding to the conserved upstream downstream flanking regions of each tRNA site to be interrogated. See Table 1 for a summary of the program features. In this study four complete genomes were compared by the tRNAcc method: *E. coli* K-12 MG1655, *E. coli* UPEC CFT073, *E. coli* O157:H7 EDL933 and *Shigella flexneri* 2a Sf301. Four distinct genome subsets were analysed with the MG1655 genome being used as the reference template in each case. The following abbreviations were used: UCB, upstream chromosomal block; DCB, downstream chromosomal block; GI, genomic island; UF, 2-kb upstream conserved flank; DF, 2-kb downstream conserved flank.
Table 2. List of the important files used in the tRNAcc analysis for the four *Escherichia coli* and *Shigella* genomes: *E. coli* K-12 MG1655 (NCBI Refseq AC: NC_00913), *E. coli* UPEC CFT073 (NC_004431), *E. coli* O157:H7 EDL933 (NC_002655) and *S. flexneri* 2a Sf301 (NC_004337)

<table>
<thead>
<tr>
<th>File type</th>
<th>Directory</th>
<th>File</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program</td>
<td>tRNAcc\</td>
<td>Run_IdentifyIsland.bat</td>
<td>Predefined executable batch file under MS-DOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Run_TabulateIsland.bat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Run_ExtractFlank.bat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Run_DNAnalyser.bat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Run_GenomeSubstrator.bat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See Table 1 for the stand-alone program in the tRNAcc software package</td>
</tr>
<tr>
<td>Essential input files *</td>
<td>tRNAcc\input_data</td>
<td>genome-being-compared_4.dat</td>
<td>4 genomes of Set 4 in Fig.1 the first genome is identified as the reference genome in tRNAcc: User-generated to specified format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>genome-being-compared_3I.dat</td>
<td>3 genomes of Set 3I in Fig.1 User-generated to specified format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>genome-being-compared_3II.dat</td>
<td>3 genomes of Set 3II in Fig.1 User-generated to specified format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>genome-being-compared_3III.dat</td>
<td>3 genomes of Set 3III in Fig.1 User-generated to specified format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tRNA-being-analysed.dat</td>
<td>the tRNA sites being analysis User-generated to specified format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NC_000913.fna</td>
<td>Genome sequence of MG1655 Downloaded from NCBI Refseq project</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NC_000913_tRNA.dat</td>
<td>tRNA gene coordinations in MG1655 genome Download the annotation of the tRNA and tmRNA (ssrA) genes from NCBI Refseq Project and the tmRNA website, respectively; Then revised it into the specified format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NC_000913.ptt</td>
<td>Annotated gene coordinations in MG1655 input for GenomeSubstrator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NC_000913.dat</td>
<td>Downloaded from NCBI Refseq Project and revised to the required format using a text editor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NC_004431.fna</td>
<td>Genome sequence of CFT073 Downloaded from NCBI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NC_004431_tRNA.dat</td>
<td>tRNA genes of CFT073 User-generated to specified format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NC_002655.fna</td>
<td>Genome sequence of EDL933 Downloaded from NCBI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NC_002655_tRNA.dat</td>
<td>tRNA genes of EDL933 User-generated to specified format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NC_004337.fna</td>
<td>Genome sequence of Sf301 Downloaded from NCBI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NC_004337_tRNA.dat</td>
<td>tRNA genes of Sf301 User-generated to specified format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NC_004337.ptt</td>
<td>Annotated gene coordinations in MG1655 input for GenomeSubstrator or DNAnalyser with ‘- o’ option.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hcutoff.dat</td>
<td>The H value cut-off for GenomeSubstrator User-generated to specified format</td>
</tr>
<tr>
<td>Default input files *</td>
<td>tRNAcc\input_data</td>
<td>Hcutoff.dat</td>
<td>The H value cut-off for GenomeSubstrator User-generated to specified format</td>
</tr>
<tr>
<td>Optional input files *</td>
<td>tRNAcc\input_data</td>
<td>NC_000913.ppt</td>
<td>Annotated gene coordinations in MG1655 input for GenomeSubstrator or DNAnalyser with ‘- o’ option.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NC_004431.ppt</td>
<td>Annotated genes of CFT073 User-generated to specified format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NC_002655.ppt</td>
<td>Annotated genes of EDL933 User-generated to specified format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NC_004337.ppt</td>
<td>Annotated genes of Sf301 User-generated to specified format</td>
</tr>
<tr>
<td>Output files</td>
<td>Manual output files</td>
<td>Temporary output files</td>
<td>Optional output files</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>tRNAcc\output_data</td>
<td>GI-found_4.dat</td>
<td>GI-found_3.dat</td>
<td>GI-found_3I.dat</td>
</tr>
<tr>
<td>GI-found_3I.dat</td>
<td>GI-found_3II.dat</td>
<td>GI-found_3III.dat</td>
<td>GI_table</td>
</tr>
<tr>
<td>Output files</td>
<td>tRNAcc\output_data</td>
<td>tRNAcc\temp_data</td>
<td>tRNAcc\output_data</td>
</tr>
<tr>
<td>GI-found_checked.dat</td>
<td>tRNA_output.mauve</td>
<td>tRNA_out.mauve</td>
<td>UF_tRNA_GI.fas</td>
</tr>
<tr>
<td>Manual output files</td>
<td>Manual analysis result for distinct genome subsets to improve prediction of island boundaries</td>
<td>Alignment result that can be visualized with Mauve viewer</td>
<td>the DNA sequences of the upstream conserved flanking region (UF) of the given tRNA site across the genomes being compared</td>
</tr>
<tr>
<td>Optional output files</td>
<td></td>
<td></td>
<td>the DNA sequences of the downstream conserved flanking region (DF)</td>
</tr>
<tr>
<td>tRNAcc\output_data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC_000913.ptt_uniquegene_1_H0.42_name.dat</td>
<td></td>
<td></td>
<td>The MG1655 strain-specific genes identified by GenomeSubstrator</td>
</tr>
</tbody>
</table>

* As the C++ language used to encode tRNAcc v1.0 employs the ANSI character set by default, all user-generated input text files must be compiled using ANSI encoding and not with Unicode, UTF-8 or an alternative character set. Please refer to the following webpage for more details on character encoding: http://gedcom-parse.sourceforge.net/doc/encoding.html.
3. Program (I): IdentifyIsland

The program IdentifyIsland predicts putative islands based on conserved flanking blocks identified using the multiple aligner mauveAligner.exe (Darling, et al. 2004, Genome Res., 14, 1394-1403). To run the executable program IdentifyIsland.exe, type its name at the command prompt (under MS-DOS):

```
IdentifyIsland <tRNA-being-analysed> <genome-being-compared> <output-GI-found> [options]
```

Running options are as follows:

- `-u n`, Set the upstream chromosomal block (UCB) size to \(n\) bp (Default is 4000).
- `-d n`, Set the downstream chromosomal block (DCB) size to \(n\) bp (Default is 250000).

Note that the tRNA gene being analysed file and the genome being compared file must be in the exact formats as shown below in this document. The input files must be saved in the subdirectory input_data. No blank cells are permitted in any of the input files. In addition, the complete genome sequence and details of the annotated tRNA genes should be provided in the subdirectory input_data. The file(s) genome_NC.fna contains the complete genome sequence in FASTA format. The file(s) genome_NC_tRNA.dat contains the coordinates of the annotated tRNA genes. These files should be in the given formats (see the files NC_000913.fna and NC_000913_tRNA.dat in the subdirectory tRNAcc\input_data).

The example tested on Set 4, which contains all the four genomes being compared (MG1655, CFT073, EDL933 and Sf301) (Fig. 1), is run using the default options at the command prompt (under MS-DOS) as follows.

```
>IdentifyIsland.exe tRNA-being-analysed.dat genome-being-compared_4.dat GI-found_4.dat
```

The input files used are listed as follows.

(i) The tRNA genes being analysed are saved in the file input_data\tRNA-being-analysed.dat, which was derived from the known tRNA (and tmRNA) genes in the MG1655 reference genome and compiled in the following format:
Here, ‘t’ (or ‘f’) denotes the tRNA gene being analysis (or not). Empty cells are not permitted in this file. Note that tRNA are mapped into the MG1655 tRNA gene annotation file input_data\NC_000913_tRNA.dat, using their unique names as the matching keyword.

(ii) The file input_data\genome-being-compared_4.dat specifies the four genomes being compared in Set 4 and is prepared in following format:

<genome accession number>
NC_000913
NC_004431
NC_002655
NC_004337

Note that IdentifyIsland identifies the reference template based on the first listed genome in the genome being compared file. For example in the file shown above, IdentifyIsland identifies the MG1655 genome (NC_000913) as the reference template. Empty cells are not permitted in the file.

(iii) The files defining the genome sequence should be prepared in the following formats:

The MG1655 genome sequence file: input_data\NC_000913.fna

>gi|49175990|ref|NC_000913.2| Escherichia coli K12, complete genome
AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGGATTAAAAAAAGAGTGTCTGATAGCAGC
TTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTCACTAAATACTTTAACCAA...
GCAATGTTGCAACGTTTCTGATGATATTGAAAAAAATATCACCAAATACCCACGCGCCCTAGGATAAGTATTTTTC
It is suggested that the user download NC_000913.fna or other required genome files in single-FASTA format from the NCBI at ftp.ncbi.nih.gov/genome/bacteria or specified genome sequencing centres. Note that the filename (NC_000913.fna) comprises of the Refseq NC number (NC_000913) followed by a dot (.) and three characters (fna). The same NC number is used in the genome being compared file.

The MG1655 tRNA gene annotation file: input_data\NC_000913_tRNA.dat

<table>
<thead>
<tr>
<th><Start></th>
<th><Stop></th>
<th><strand></th>
<th><tRNA></th>
</tr>
</thead>
<tbody>
<tr>
<td>225381</td>
<td>225457</td>
<td>+</td>
<td>ileV</td>
</tr>
<tr>
<td>225500</td>
<td>225575</td>
<td>+</td>
<td>alaV</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4604338</td>
<td>4604424</td>
<td>-</td>
<td>leuQ</td>
</tr>
</tbody>
</table>

Note, '+' or '-' symbols in the third column denote that the tRNA gene is encoded within the forward or complementary strand, respectively. The user would take the details of the tRNA and tmRNA (ssrA) genes from NCBI Refseq annotations and the tmRNA website at http://www.indiana.edu/~tmrna/, respectively. The filename (NC_000913_tRNA.dat) comprises the NC number (NC_000913) followed by five characters (_tRNA), a dot (.) and three characters (dat). The same NC number is used in the file input_data\genome-being-compared_4.dat. tRNA are mapped into the file input_data\tRNA-being-analysed.dat, described above, using their unique names as the matching keyword. Note that empty cells are not permitted in this file as well. The genome and tRNA gene files for the other three genomes (CFT073, EDL933 and Sf301) are also prepared in the given formats and stored in the subdirectory input_data.

The output file GI-found_4.dat is saved in the subdirectory output_data in the following format.

<table>
<thead>
<tr>
<th><#></th>
<th><tRNA></th>
<th><genome></th>
<th><tRNA start></th>
<th><tRNA stop></th>
<th><strand></th>
<th><GI start></th>
<th><GI stop></th>
<th><GI size></th>
<th><Description></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>aspV</td>
<td>NC_000913</td>
<td>236931</td>
<td>237007</td>
<td>+</td>
<td>237008</td>
<td>239419</td>
<td>2412</td>
<td>normal</td>
</tr>
<tr>
<td>4</td>
<td>aspV</td>
<td>NC_004431</td>
<td>248554</td>
<td>248630</td>
<td>+</td>
<td>248631</td>
<td>348625</td>
<td>99995</td>
<td>normal</td>
</tr>
<tr>
<td>4</td>
<td>aspV</td>
<td>NC_002655</td>
<td>240482</td>
<td>240558</td>
<td>+</td>
<td>240559</td>
<td>277488</td>
<td>36930</td>
<td>normal</td>
</tr>
<tr>
<td>4</td>
<td>aspV</td>
<td>NC_004337</td>
<td>229833</td>
<td>229909</td>
<td>+</td>
<td>229910</td>
<td>287582</td>
<td>57673</td>
<td>normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>etc…</td>
</tr>
</tbody>
</table>

11
In addition, the alignment result for each of the tRNA sites under study is saved as the .mauve file in the subdirectory \temp_data (Table 2). Say \temp_data\aspV_out.mauve for \textit{aspV} site. It can be displayed by the Mauve viewer with the input of aspV_out.mauve (see Fig. 2). Mauve is available at \url{http://gel.ahabs.wisc.edu/mauve}.

\textbf{Figure 2.} Screenshot of the Mauve viewer for locally collinear blocks (LCBs) in the 4 kb upstream chromosomal block (UCB) and 250 kb downstream chromosomal block (DCB) flanking the \textit{aspV} sites identified among the 4 \textit{E. coli} and \textit{Shigella} genomes. Each contiguously colored region is a locally collinear block, a region without rearrangement of homologous backbone sequence. The 100 kb island in \textit{E. coli} UPEC CFT073 can be visualized as the distance between the tRNA-proximal LCB in UCB (colored in red) and that in DCB (colored in dark yellow) in the genome's center line marked with ‘aspV_NC_004431.fas’.

Using MG1655 as the reference template in all cases, four different subsets of the genomes being compared were tested (Fig. 1): Set 4 (MG1655, CFT073, EDL933 and Sf301), Set 3I
(MG1655, CFT073 and EDL933), Set 3II (MG1655, EDL933 and Sf301) and Set 3III (MG1655, CFT073 and Sf301). To run the program IdentifyIsland for each subset individually, a simple batch file Run_IdentifyIsland.bat would be the following:

IdentifyIsland.exe tRNA-being-analysed.dat genome-being-compared_4.dat GI-found_4.dat
IdentifyIsland.exe tRNA-being-analysed.dat genome-being-compared_3I.dat GI-found_3I.dat
IdentifyIsland.exe tRNA-being-analysed.dat genome-being-compared_3II.dat GI-found_3II.dat
IdentifyIsland.exe tRNA-being-analysed.dat genome-being-compared_3III.dat GI-found_3III.dat

After running the above batch file, four candidate island reports were obtained in the subdirectory output_data: GI-found_4.dat, GI-found_3II.dat, GI-found_3II.dat and GI-found_3II.dat. Then a comparison table generated by the program TabulateIsland was helpful for the selection of the correct islands (Fig. 1).

4. Program (II): TabulateIsland

The program TabulateIsland tabulates the islands identified when analysing different subsets of genomes. To run the executable program TabulateIsland.exe, type its name at the command prompt (under MS-DOS):

TabulateIsland <tRNA-being-analysed> <Dataset-Number> <Genome-being-compared-SetI> <Identified-GI-based-on-SetI> <Genome-being-compared-SetII> <Identified-GI-based-on-SetII> <output-GI-table>

For this example, a batch file Run_TabulateIsland.bat would be the following:

TabulateIsland tRNA-being-analysed.dat 4 genome-being-compared_4.dat GI-found_4.dat genome-being-compared_3I.dat GI-found_3I.dat genome-being-compared_3II.dat GI-found_3II.dat genome-being-compared_3III.dat GI-found_3III.dat GI_table.txt
The input files tRNA-being-analysed.dat, genome-being-compared_4.dat genome-being-compared_3I.dat, genome-being-compared_3II.dat and genome-being-compared_3III.dat are stored in the subdirectory input_data with the given formats. But the others GI-found_4.dat, GI-found_3I.dat, GI-found_3II.dat and GI-found_3III.dat had been generated by the program IdentifyIsland and therefore stored in the subdirectory output_data.

The resulting comparison table GI_table.txt in the subdirectory output_data is helpful for telling the correct islands from the candidates taken from different subsets. A file GI-found_checked.dat containing the manually checked islands can therefore be generated in using a text editor and saved in the subdirectory output_data. The format of GI-found_checked.dat is same to that of GI-found_4.dat, described in the section ‘Program (I): IdentifyIsland’.

To run the batch file Run_TabulateIsland.bat, the user would type:

> Run_TabulateIsland.bat

Some results of the procedure will appear on the computer screen.

```
WELCOME TO TabulateIsland!

The input parameters...
tRNA being analysed file : input_data\tRNA-being-analysed.dat
# of dataset = 4
(1) input_data\genome-being-compared_4.dat; output_data\GI-found_4.dat
(2) input_data\genome-being-compared_3I.dat; output_data\GI-found_3I.dat
(3) input_data\genome-being-compared_3II.dat; output_data\GI-found_3II.dat
(4) input_data\genome-being-compared_3III.dat; output_data\GI-found_3III.dat
Output GI table file : output_data\GI_table.txt

tRNA being analysed file : input_data\tRNA-being-analysed.dat
# of tRNA genes listed = 87
# of tRNA genes being analysed = 87

GIs identified when analysing different subsets of genomes
Subset (1)
  # of genome contained = 4
  # of input GI = 252
Subset (2)
  # of genome contained = 3
  # of input GI = 3
Subset (3)
```
5. Program (III): ExtractFlank

The program ExtractFlank generates multi-FASTA files containing the upstream or
downstream flanking regions for the identified islands. To run the executable program
ExtractFlank.exe, type its name at the command prompt (under MS-DOS):

```
ExtractFlank <tRNA-being-analysed> <genome-being-compared> <GI-found_checked> [options]
```

Running options are as follows:

- `-u n`, Set the UF size to n bp (Default is 2000).
- `-d n`, Set the DF size to n bp (Default is 2000).
- `-h`, Set the hotspot as non-tRNA.

For this example, a batch file Run_ExtractFlank.bat would be the following:

```
ExtractFlank tRNA-being-analysed.dat genome-being-compared_4.dat GI-found_checked.dat
```

The input files tRNA-being-analysed.dat and genome-being-compared_4.dat are stored in
the subdirectory input_data with the given formats. Based on the identified boundaries of the GI
contained in file output_data\GI-found_checked.dat, a 2-kb upstream flanking region (UF) and
2-kb downstream flanking region (DF) for each tRNA gene across the full set of genomes being
compared was extracted using the program ExtractFlank. The output UF and DF files are stored in
the subdirectory output_data, respectively; say UF_aspV_GI.fas and DF_aspV_GI.fas for aspV-
borne islands. Next, the specific primer pair for UF and DF of a given tRNA site are designed using
the online program Primaclade (http://www.umsl.edu/services/kellogg/primaclade.html) with the inputs comprising the ClustalW-derived multiple sequence alignments (http://www.ebi.ac.uk/clustalw/). Candidate primers for the UF and DF regions of each tRNA gene targeted are then screened by BLASTN searching against the genomes under consideration to minimize the likelihood of non-specific amplification.

Run the batch file Run_ExtractFlank.bat at the command prompt as follows.

> Run_ExtractFlank.bat

Some results of the procedure will appear on the computer screen.

WELCOME TO ExtractFlank!

tRNA being analysed file : input_data\tRNA-being-analysed.dat
 # of tRNA genes listed = 87
 # of tRNA genes being analysed = 87

 # of input GIs = 80

Genome being compared file : input_data\genome-being-compared_4.dat
 # of genomes being compared = 4

(1) genome sequence file : input_data\NC_000913.fna
 Genome size (bp) = 4639675
 G+C content = 50.79 %
 Annotated tRNA gene file : input_data\NC_000913_tRNA.dat
 # of annotated tRNA genes = 87

(2) genome sequence file : input_data\NC_004431.fna
 Genome size (bp) = 5231428
 G+C content = 50.47 %
 Annotated tRNA gene file : input_data\NC_004431_tRNA.dat
 # of annotated tRNA genes = 90

(3) genome sequence file : input_data\NC_002655.fna
 Genome size (bp) = 5528445
 G+C content = 50.38 %
 Annotated tRNA gene file : input_data\NC_002655_tRNA.dat
 # of annotated tRNA genes = 99

(4) genome sequence file : input_data\NC_004337.fna
 Genome size (bp) = 4607203
 G+C content = 50.89 %
 Annotated tRNA gene file : input_data\NC_004337_tRNA.dat
 # of annotated tRNA genes = 98
The program DNAanalyser calculates the GC content, the dinucleotide bias of identified islands, and the negative cumulative GC profile of genomes. Dinucleotide bias analysis was performed using the method proposed by Karlin (2001, *Trends Microbiol*, 9, 335-343). The dinucleotide relative abundance difference δ^* between the island fragment and the genome were calculated. The genome-averaged δ^* value was also obtained by using a 20-kb non-overlapping, sliding window along the entire genome sequence. The negative form of the cumulative GC profile of Zhang and colleagues (2004, *Bioinformatics*, 20, 612-622; Zhang, *et al.*, 2005, *Physical Review E*, 72, 041917; see the brief description in the supplementary materials) was used to visualise the locations of the identified tRNA-borne islands within the context of complete genomes.

To run the executable program DNAanalyser.exe, type its name at the command prompt:

```
DNAanalyser <GI-being-analysed> <genome-being-found> [options]
```

Running options are as follows:

- `-o`, Find the annotated CDS harbouring in the islands.
- `-i`, Output the DNA sequences of the islands.
- `-g`, Calculate the GC content and dinucleotide bias.
- `-z`, Calculate the negative cumulative GC profile.
- `-s n`, Set the size (n bp) of the non-overlapping, sliding window for the coarse-grained negative cumulative GC profile (Default is 10 bp).
For this example, a batch file Run_DNAnalyser.bat would be the following:

DNAnalyser genome-being-compared_4.dat GI-found_checked.dat -o -g –z > DNAnalyser_result.txt

The input file genome-being-compared_4.dat and GI-found_checked.dat are stored in the subdirectory input_data and output_data, respectively, with the given formats.

When run DNAnalyser with the option ‘-o’, the annotated protein-coding sequences (CDS) file for each genome being analysed should be provided in the subdirectory input_data in the following format. Say, NC_000913.ptt for the annotated CDS in MG1655 genome.

The CDS annotation file: NC_000913.ptt

<table>
<thead>
<tr>
<th><Start></th>
<th><Stop></th>
<th><strand></th>
<th><CDS></th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>255</td>
<td>+</td>
<td>b0001</td>
</tr>
<tr>
<td>337</td>
<td>2799</td>
<td>+</td>
<td>b0002</td>
</tr>
<tr>
<td>2801</td>
<td>3733</td>
<td>+</td>
<td>b0003</td>
</tr>
<tr>
<td>etc…</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note, ‘+’ or ‘-’ symbols in the third column denote that the CDS is encoded within the forward or complementary strand, respectively. The user would normally download NC_000913.ptt or other required CDS annotation files from the NCBI or specified genome sequencing centres. This file can then be revised into the above format using a text editor. The filename (NC_000913.ptt) comprises the NC number (NC_000913) followed by a dot (.) and three characters (ptt). The same NC number is used in the genome being compared file. Note that empty cells are not permitted in this file as well.

The GC content and dinucleotide relative abundance difference for each GI are shown in the file DNAnalyser_result.txt after running DNAnalyser. The CDS carried by the GIs are stored in the subdirectory output_data, say the file GI_BorneCDS_NC_000913.dat for the MG1655 genome. The coordination of the negative cumulative GC profile for the MG1655 genome, the tRNA genes and the identified GIs are saved into the subdirectory output_data as the file
Zp_NC_000913_genome.dat, Zp_NC_000913_hotspot.dat and Zp_NC_000913_GI.dat, respectively.

To run the batch file Run_DNAnalyser.bat, the user would type:

> Run_DNAnalyser.bat

Some results of the procedure will be saved the file DNAnalyser_result.txt.

<table>
<thead>
<tr>
<th>Genome</th>
<th>Genome size (bp)</th>
<th>G+C content</th>
<th>Delta Difference Mean (*1000)</th>
<th>Delta Difference SD (*1000)</th>
<th># of annotated CDS</th>
<th># of annotated tRNA genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC_000913</td>
<td>4639675</td>
<td>50.79%</td>
<td>26.17</td>
<td>11.05</td>
<td>4242</td>
<td>87</td>
</tr>
<tr>
<td>NC_004431</td>
<td>5231428</td>
<td>50.47%</td>
<td>31.20</td>
<td>17.55</td>
<td>5379</td>
<td>90</td>
</tr>
<tr>
<td>NC_002655</td>
<td>5528445</td>
<td>50.38%</td>
<td>32.69</td>
<td>23.03</td>
<td>5324</td>
<td>90</td>
</tr>
</tbody>
</table>
Annotated tRNA gene file : input_data\NC_002655_tRNA.dat
of annotated tRNA genes = 99

(4) genome sequence file : input_data\NC_004337.fna
Genome size (bp) = 4607203
G+C content = 50.89 %
Delta Difference Mean (*1000) = 26.72
Delta Difference SD (*1000) = 13.80
Note: The delta difference is calculated using a 20 kb sliding window.
the slope of Z' curve = -0.01
Annotated CDS file : input_data\NC_004337.ptt
of annotated CDS = 4180
Annotated tRNA gene file : input_data\NC_004337_tRNA.dat
of annotated tRNA genes = 98

Output analysis result...
of GIs in total = 61
NC_000913 # of GIs = 15

<table>
<thead>
<tr>
<th>Hotspot</th>
<th>Orient. Start</th>
<th>End</th>
<th>Size</th>
<th>CDS</th>
<th>GC%</th>
<th>delta*1000(SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aspV</td>
<td>+</td>
<td>237008</td>
<td>239419</td>
<td>2.41</td>
<td>1</td>
<td>38.10 82.18</td>
</tr>
<tr>
<td>thrW</td>
<td>+</td>
<td>262171</td>
<td>302055</td>
<td>39.88</td>
<td>21</td>
<td>54.02 37.20</td>
</tr>
<tr>
<td>serW</td>
<td>-</td>
<td>924838</td>
<td>925106</td>
<td>0.27</td>
<td>0</td>
<td>42.01 N/D</td>
</tr>
<tr>
<td>serX</td>
<td>-</td>
<td>1096261</td>
<td>1096787</td>
<td>0.53</td>
<td>0</td>
<td>58.25 N/D</td>
</tr>
<tr>
<td>tyrT</td>
<td>-</td>
<td>1285725</td>
<td>1286760</td>
<td>1.01</td>
<td>1</td>
<td>54.41 196.18</td>
</tr>
<tr>
<td>serU</td>
<td>-</td>
<td>2040051</td>
<td>2041491</td>
<td>1.44</td>
<td>0</td>
<td>40.67 60.75</td>
</tr>
<tr>
<td>asnT</td>
<td>+</td>
<td>2042649</td>
<td>2052776</td>
<td>10.13</td>
<td>1</td>
<td>48.04 45.86</td>
</tr>
<tr>
<td>argW</td>
<td>+</td>
<td>2464406</td>
<td>2476989</td>
<td>12.58</td>
<td>9</td>
<td>44.60 51.98</td>
</tr>
<tr>
<td>lysV</td>
<td>+</td>
<td>2519351</td>
<td>2523951</td>
<td>4.60</td>
<td>2</td>
<td>47.60 42.42</td>
</tr>
<tr>
<td>glyU</td>
<td>-</td>
<td>2985268</td>
<td>2997005</td>
<td>11.74</td>
<td>9</td>
<td>36.41 82.97</td>
</tr>
<tr>
<td>pheV</td>
<td>+</td>
<td>3108464</td>
<td>3117604</td>
<td>9.14</td>
<td>3</td>
<td>50.56 19.85</td>
</tr>
<tr>
<td>selC</td>
<td>+</td>
<td>3834340</td>
<td>3836246</td>
<td>1.91</td>
<td>0</td>
<td>43.58 64.73</td>
</tr>
<tr>
<td>leuX</td>
<td>+</td>
<td>4494513</td>
<td>4534634</td>
<td>40.12</td>
<td>19</td>
<td>50.14 45.10</td>
</tr>
<tr>
<td>ssrA</td>
<td>+</td>
<td>2753978</td>
<td>2783565</td>
<td>29.59</td>
<td>15</td>
<td>45.72 63.42</td>
</tr>
<tr>
<td>argU</td>
<td>+</td>
<td>564023</td>
<td>585323</td>
<td>21.30</td>
<td>15</td>
<td>43.27 59.86</td>
</tr>
</tbody>
</table>

NC_004431 # of GIs = 17

<table>
<thead>
<tr>
<th>Hotspot</th>
<th>Orient. Start</th>
<th>End</th>
<th>Size</th>
<th>CDS</th>
<th>GC%</th>
<th>delta*1000(SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aspV</td>
<td>+</td>
<td>248631</td>
<td>348625</td>
<td>100.00</td>
<td>54</td>
<td>47.38 67.99</td>
</tr>
<tr>
<td>thrW</td>
<td>+</td>
<td>370300</td>
<td>377957</td>
<td>7.66</td>
<td>4</td>
<td>43.80 109.80</td>
</tr>
<tr>
<td>serW</td>
<td>-</td>
<td>979744</td>
<td>980012</td>
<td>0.27</td>
<td>0</td>
<td>40.52 N/D</td>
</tr>
<tr>
<td>serX</td>
<td>-</td>
<td>1127287</td>
<td>1241061</td>
<td>113.78</td>
<td>59</td>
<td>48.73 62.17</td>
</tr>
<tr>
<td>tyrT</td>
<td>-</td>
<td>1525206</td>
<td>1532508</td>
<td>7.30</td>
<td>4</td>
<td>52.02 49.47</td>
</tr>
<tr>
<td>serU</td>
<td>-</td>
<td>2193666</td>
<td>2216840</td>
<td>23.18</td>
<td>13</td>
<td>37.70 84.51</td>
</tr>
<tr>
<td>asnT</td>
<td>+</td>
<td>2217998</td>
<td>2255240</td>
<td>37.24</td>
<td>13</td>
<td>55.95 29.76</td>
</tr>
<tr>
<td>argW</td>
<td>+</td>
<td>2746800</td>
<td>2761355</td>
<td>14.56</td>
<td>4</td>
<td>44.28 90.78</td>
</tr>
<tr>
<td>lysV</td>
<td>+</td>
<td>2802362</td>
<td>2806808</td>
<td>4.45</td>
<td>2</td>
<td>47.25 46.42</td>
</tr>
<tr>
<td>metV</td>
<td>+</td>
<td>3222388</td>
<td>3255081</td>
<td>32.69</td>
<td>13</td>
<td>52.92 21.21</td>
</tr>
<tr>
<td>glyU</td>
<td>-</td>
<td>3295279</td>
<td>3295425</td>
<td>0.15</td>
<td>0</td>
<td>34.01 N/D</td>
</tr>
<tr>
<td>pheV</td>
<td>+</td>
<td>3406301</td>
<td>3534241</td>
<td>127.94</td>
<td>73</td>
<td>47.18 66.81</td>
</tr>
<tr>
<td>selC</td>
<td>+</td>
<td>4274399</td>
<td>4343017</td>
<td>68.62</td>
<td>44</td>
<td>46.98 46.30</td>
</tr>
<tr>
<td>pheU</td>
<td>-</td>
<td>4919458</td>
<td>4971584</td>
<td>52.13</td>
<td>37</td>
<td>47.52 75.95</td>
</tr>
<tr>
<td>leuX</td>
<td>+</td>
<td>5115427</td>
<td>5131334</td>
<td>15.91</td>
<td>8</td>
<td>48.02 66.31</td>
</tr>
<tr>
<td>ssrA</td>
<td>+</td>
<td>3018542</td>
<td>3067527</td>
<td>48.98</td>
<td>32</td>
<td>49.05</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>asnW</td>
<td>+</td>
<td>2261814</td>
<td>2317212</td>
<td>54.40</td>
<td>13</td>
<td>53.19</td>
</tr>
</tbody>
</table>

NC_002655 # of GIs = 16

<table>
<thead>
<tr>
<th>Hotspot Orient. Start</th>
<th>End</th>
<th>Size</th>
<th>CDS</th>
<th>GC%</th>
<th>delta*1000(SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aspV +</td>
<td>240559</td>
<td>277488</td>
<td>36.93</td>
<td>16</td>
<td>51.62</td>
</tr>
<tr>
<td>thrW +</td>
<td>300059</td>
<td>335240</td>
<td>35.18</td>
<td>22</td>
<td>46.80</td>
</tr>
<tr>
<td>serW -</td>
<td>1058350</td>
<td>1146183</td>
<td>87.83</td>
<td>53</td>
<td>47.95</td>
</tr>
<tr>
<td>serT -</td>
<td>1250316</td>
<td>1295562</td>
<td>45.25</td>
<td>31</td>
<td>52.15</td>
</tr>
<tr>
<td>serX -</td>
<td>1454244</td>
<td>1541789</td>
<td>87.55</td>
<td>52</td>
<td>47.99</td>
</tr>
<tr>
<td>tyrT -</td>
<td>1823688</td>
<td>1824518</td>
<td>0.83</td>
<td>0</td>
<td>52.83</td>
</tr>
<tr>
<td>leuZ -</td>
<td>2668235</td>
<td>2689297</td>
<td>21.06</td>
<td>14</td>
<td>50.10</td>
</tr>
<tr>
<td>serU -</td>
<td>2741780</td>
<td>2788400</td>
<td>46.62</td>
<td>27</td>
<td>52.02</td>
</tr>
<tr>
<td>asnT +</td>
<td>2789558</td>
<td>2800590</td>
<td>11.03</td>
<td>2</td>
<td>48.30</td>
</tr>
<tr>
<td>argW +</td>
<td>3262939</td>
<td>3277063</td>
<td>14.13</td>
<td>7</td>
<td>45.03</td>
</tr>
<tr>
<td>lvsV +</td>
<td>3319704</td>
<td>3320154</td>
<td>0.45</td>
<td>1</td>
<td>43.24</td>
</tr>
<tr>
<td>glyU -</td>
<td>3776946</td>
<td>3804618</td>
<td>27.67</td>
<td>18</td>
<td>35.83</td>
</tr>
<tr>
<td>pheV +</td>
<td>3919348</td>
<td>3942803</td>
<td>23.46</td>
<td>13</td>
<td>46.32</td>
</tr>
<tr>
<td>selC +</td>
<td>4649843</td>
<td>4693540</td>
<td>4.37</td>
<td>26</td>
<td>40.94</td>
</tr>
<tr>
<td>leuX +</td>
<td>5377087</td>
<td>5421522</td>
<td>44.44</td>
<td>13</td>
<td>47.37</td>
</tr>
<tr>
<td>ssrA +</td>
<td>3545814</td>
<td>3575018</td>
<td>29.21</td>
<td>16</td>
<td>41.56</td>
</tr>
</tbody>
</table>

NC_004337 # of GIs = 13

<table>
<thead>
<tr>
<th>Hotspot Orient. Start</th>
<th>End</th>
<th>Size</th>
<th>CDS</th>
<th>GC%</th>
<th>delta*1000(SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aspV +</td>
<td>229910</td>
<td>287582</td>
<td>57.67</td>
<td>33</td>
<td>51.21</td>
</tr>
<tr>
<td>thrW +</td>
<td>311277</td>
<td>332850</td>
<td>21.57</td>
<td>13</td>
<td>44.57</td>
</tr>
<tr>
<td>serW -</td>
<td>1282218</td>
<td>1282576</td>
<td>0.36</td>
<td>1</td>
<td>53.48</td>
</tr>
<tr>
<td>serU -</td>
<td>2044147</td>
<td>2066449</td>
<td>22.30</td>
<td>11</td>
<td>48.35</td>
</tr>
<tr>
<td>asnT +</td>
<td>2067607</td>
<td>2072104</td>
<td>4.50</td>
<td>3</td>
<td>50.07</td>
</tr>
<tr>
<td>argW +</td>
<td>2476682</td>
<td>2482030</td>
<td>1.67</td>
<td>3</td>
<td>50.38</td>
</tr>
<tr>
<td>lvsV +</td>
<td>2522624</td>
<td>2523230</td>
<td>0.61</td>
<td>1</td>
<td>46.13</td>
</tr>
<tr>
<td>glyU -</td>
<td>2947607</td>
<td>2957651</td>
<td>10.05</td>
<td>6</td>
<td>48.75</td>
</tr>
<tr>
<td>pheV +</td>
<td>3052540</td>
<td>3107685</td>
<td>55.15</td>
<td>25</td>
<td>48.38</td>
</tr>
<tr>
<td>selC +</td>
<td>3806495</td>
<td>3836374</td>
<td>29.88</td>
<td>15</td>
<td>47.99</td>
</tr>
<tr>
<td>leuX -</td>
<td>4388608</td>
<td>4396147</td>
<td>7.54</td>
<td>5</td>
<td>49.22</td>
</tr>
<tr>
<td>ssrA +</td>
<td>2754496</td>
<td>2758148</td>
<td>3.65</td>
<td>2</td>
<td>51.11</td>
</tr>
</tbody>
</table>

Output the ORFs carried by the identified GIs ...

Output the negative cumulative GC profile for NC_000913

The sliding window size for the coarse-grained profile = 10 bp

Output the negative cumulative GC profile for NC_004431

The sliding window size for the coarse-grained profile = 10 bp
7. Program (V): GenomeSubstrator

The perl/Bioperl script GenomeSubstrator.pl implements a high-throughput BLASTN-based comparison of gene sequences in a query genome against the subject genomes to identify strain-specific gene based on the level of nucleotide similarity.

(1) Required software

The local version of formatdb.exe and blastall.exe taken from the NCBI BLAST software (ftp://ftp.ncbi.nih.gov) is included in the tRNAcc package. In order to run the program, Perl 5 (http://cpan.perl.org/) and Bioperl (http://www.bioperl.org/) need to be locally installed. By default, the perl installation directory is c:/Perl/. Before running the GenomeSubstrator.pl script, please check whether or not the installation directory is listed correctly in the first line of GenomeSubstrator.pl with a text editor.

(2) Running GenomeSubstrator

To run the perl script GenomeSubstrator, type its name at the command prompt:

To find the *E. coli* MG1655-specific genes with respect of the other genomes (*E. coli* CFT073, *E. coli* EDL933 and *Shigella flexneri* Sf301), a batch file Run_GenomeSubstrator.bat would be the following:

```
perl GenomeSubstrator.pl Hcutoff.dat NC_000913.ppt NC_000913.fna 3 NC_004431.fna NC_002655.fna NC_004337.fna
```

The *H* value cutoff (0.42) and the gene length cutoff (0 bp) are saved in the file input_data\Hcutoff.dat and compiled in the following format:

```
<H cutoff> <length cutoff>
0.42 0
```

The query genes greater than the length cutoff are performed the BLASTN search against the three subject genomes. If all three obtained *H* values for a given MG1655 gene ≤ 0.42, the gene are classified to be ‘strain-specific’ with respect to CFT073, EDL933 and Sf301. Details of the procedure used are included in the supplementary material.

The query gene annotation file input_data\NC_000913.ppt must be in the exact format as shown above in the section ‘Program (IV): DNAnalyser’. The query genome file NC_000913.fna and the three subject genome files (NC_004431.fna, NC_002655.fna and NC_004337.fna) are prepared in the single-FASTA format described in the section ‘Program (I): IdentifyIsland’. All the input files are saved in the directory input_data.

(3) Outputs

Run the batch file Run_GenomeSubstrator.bat at the command prompt (under MS-DOS) as follows. Note that the blast steps will take a significant amount of time.

```
> Run_GenomeSubstrator.bat
```

The gene name, the chromosome locations and the *H* values of the identified MG1655-specific genes are listed in the file output_data/NC_000913.ppt_uniquegene_1_H0.42_name.dat. Some results of the procedure will appear on the computer screen.
WELCOME TO GenomeSubstrator v1.0!

Create a new temporary subdirectory temp_seq...

Input parameters...
The file containing H value cutoff : input_data/Hcutoff.dat
The <1> H value cutoff = 0.42
Note: the putative strain-specific genes with the H value less than (or equal to) the cutoff.
The query gene file: input_data/NC_000913.ptt
The query genome file: input_data/NC_000913.fna
The 3 subject genome(s) file:
(1). NC_004431.fna
(2). NC_002655.fna
(3). NC_004337.fna

Read the gene sequences from the fasta file.
Genome sequence file : input_data/NC_000913.fna
Genome size (bp) = 4639675
G+C content = 50.79 %
Annotated gene file : input_data/NC_000913.ptt
of annotated genes = 4242
Extract 10 gene sequences into the file: temp_seq/querygeneseq.fas

Query genes are employed the BLASTN search against the subject genome(s).
(1) Versus the subject genome NC_004431.fna
(2) Versus the subject genome NC_002655.fna
(3) Versus the subject genome NC_004337.fna

Predict the strain-specific genes in the query genome using the H cutoff.
<1> the H value cutoff = 0.42
the gene length cutoff (bp) = 0
Query gene file: input_data/NC_000913.ptt
of query genes = 4242

(1) Parse file: temp_seq\parseblastresult1.txt
of 'parsed' genes = 4242
of 'parsed' genes matching query genes = 4242

(2) Parse file: temp_seq\parseblastresult2.txt
of 'parsed' genes = 4242
of 'parsed' genes matching query genes = 4242

(3) Parse file: temp_seq\parseblastresult3.txt
of 'parsed' genes = 4242
of 'parsed' genes matching query genes = 4242

of query genes being Blast vs all subject genomes = 4242
of query genes greater than the length threshold (0 bp) = 4242
of unique genes = 234
Extract the putative strain-specific genes.
of the query genes = 4242
of the strain-specific genes = 234

Output strain-specific genes into output_data/NC_000913.ptt_uniquegene_1_H0.42_name.dat
Output sequences of strain-specific genes into
output_data/NC_000913.ptt_uniquegene_1_H0.42_seq.fas

Output the conserved genes into output_data/NC_000913.ptt_conservedgene_1_H0.42_name.dat
Output the sequences of conserved genes into
output_data/NC_000913.ptt_conservedgene_1_H0.42_seq.fas

8. Program (VI): LocateHotspots

The perl/Bioperl script LocateHotspots.pl is designed to facilitate the process of locating known hotspots in un-annotated chromosomal sequences using BLASTN-based searches. For a given hotspot in the reference genome, the potential candidates in the test genome are identified based on the nucleotide similarity of the hotspot sequence and its 2-kb upstream flanking region.

The subsequent manual examination is necessary to confirm the hotspot coordination in the test genome.

(1) Required software

The local version of formatdb.exe and blastall.exe taken from the NCBI BLAST software (ftp://ftp.ncbi.nih.gov) is included in the tRNAcc package. In order to run the program, Perl 5 (http://cpan.perl.org/) and Bioperl (http://www.bioperl.org/) need to be locally installed. By default, the perl installation directory is c:/Perl/. Before running the LocateHotspots.pl script, please check whether or not the installation directory is listed correctly in the first line of LocateHotspots.pl with a text editor.

(2) Running LocateHotspots

To run the perl script LocateHotspots, type its name at the command prompt:
To locate the *E. coli* MG1655 known tRNA genes in the other genomes (*E. coli* CFT073, *E. coli* EDL933 and *Shigella flexneri* Sf301), a batch file Run_LocateHotspots.bat would be the following:

```
perl LocateHotspots.pl tRNA-being-analysed.dat NC_000913_tRNA.dat genome-being-compared_4.dat 1
```

The files tRNA-being-analysed.dat, file genome-being-compared_4.dat and NC_000913_tRNA.dat must be prepared in the exact formats and saved in the subdirectory input_data. In addition, the complete genome sequences (NC_004431.fna, NC_002655.fna and NC_004337.fna) should be provided in the subdirectory input_data in the given format. See the section ‘Program (I): IdentifyIsland’.

(3) Outputs

Run the batch file Run_LocateHotspots.bat at the command prompt as follows.

```
> Run_LocateHotspots.bat
```

The lists of the identified coordination and the *H*-value of the hotspots in each genomes being compared are saved individually in the subdirectory output_data. **Note that the further manual examination is necessary to confirm the hotspot coordination.** Some results of the procedure will appear on the computer screen.

```
WELCOME TO LocateHotspots v1.0!

Input parameters...
The hotspot file: input_data/tRNA-being-analysed.dat
The genome being analysed file: input_data/genome-being-compared_4.dat
Max number of the best hits for each hotspot = 1

1. Read the hotspots.
```
2. Read the hotspot locations in the reference genome.
 The hotspot file: input_data/NC_000913_tRNA.dat
 # of hotspots in the reference genome = 87

3. Read the genomes being compared.
 # of the genomes being compared = 4
 (1). NC_000913.fna
 (2). NC_004431.fna
 (3). NC_002655.fna
 (4). NC_004337.fna

4. Extract the upstream flanking regions and hotspot in the reference genome.
 hotspots being analysed file : input_data\tRNA-being-analysed.dat
 # of hotspots listed = 87
 # of hotspots being analysed = 87

 The reference genome: NC_000913
 Genome sequence file : input_data\NC_000913.fna
 Genome size (bp) = 4639675
 G+C content = 50.79 %
 Annotated tRNA gene file : input_data\NC_000913_tRNA.dat
 # of annotated tRNA genes = 87
 Sequence output file :temp_data\hotspotqueryseq.fas

5. All the hotspots are BLASTN against the genomes being compared.
 (1) Versus the subject genome NC_000913.fna.
 (2) Versus the subject genome NC_004431.fna.
 (3) Versus the subject genome NC_002655.fna.
 (4) Versus the subject genome NC_004337.fna.

6. Predict the hotspot locations in the other genomes being compared.
 (1)# of found hotspots in NC_000913 = 87
 output file: output_data/NC_000913_hotspots.dat

 (2)# of found hotspots in NC_004431 = 87
 output file: output_data/NC_004431_hotspots.dat

 (3)# of found hotspots in NC_002655 = 87
 output file: output_data/NC_002655_hotspots.dat

 (4)# of found hotspots in NC_004337 = 87
 output file: output_data/NC_004337_hotspots.dat
9. Application of tRNAcc to interrogate CGI-defined non-tRNA hotspots

A new approach, termed microarray-assisted mobilome prospecting (MAmP) (Ou, et al., 2005, *Nucleic Acids Res.*, 33,e3), has recently been proposed to screen large numbers of bacterial isolates to identify strains rich in novel genetic material for further detailed analyses. The MAmP approach combines physical chromosome sizing and virtual sizing using microarray-derived comparative genomic indexing (CGI) data to estimate the novel DNA content of a test strain. Strains that possess large complements of accessory genomic material can then be chosen for subsequent island prospecting studies.

Furthermore as has been proposed by several investigators, CGI data could also be used to identify possible non-tRNA-associated integration hotspots. These loci could then be investigated using approaches equivalent to tRNAcc and tRIP. We tested this strategy by exploring putative hotspots identified using previously published MG1655 array-derived data for 27 clinical and field *E. coli* isolates from diseased and healthy animals. Anjum et al. (2003, *Infect. Immun.*, 71, 4674-4683) had identified 49 highly variable segments of the MG1655 chromosomal backbone with more than 10 consecutive CDS absent from at least two strains. Fourteen of these variable regions lie within MG1655 GIs at 6 tRNA genes (*thrW, argU, argW, ssrA, pheV* and *leuX*), confirming that tRNA genes frequently serve as integration sites for acquired DNA. Following *coliBASE*-facilitated examination of the remaining 35 MG1655 variable segments and the corresponding regions in CFT073, EDL933 and Sf301, 6 putative hotspots (*icdA, ydbL, galF, rfaC, yjiA* and *yjiY*) were identified (Table 3). These six genes were termed ‘CDS-hotspots’. Unlike tRNA sites, GIs could lie adjacent to either the 3’-end or the 5’-end of the implicated CDS. When tRNAcc was used to investigate these 6 CDS-hotspots, 20 GI-like regions were identified within the core set of four genomes (Table 3). Further characterization of other putative GIs linked to CDS-hotspots supports a foreign origin for most of these elements and suggests that PCR-based screening can also be used to efficiently scan non-tRNA-associated hotspots in closely related strains.
Table 3. Sizes of genomic islands identified by the tRNAcc method that map to non-tRNA sites in four sequenced *E. coli* and *Shigella* genomes a

<table>
<thead>
<tr>
<th>No</th>
<th>tRNA gene</th>
<th>E. coli K-12 MG1655</th>
<th>E. coli UPEC CFT073</th>
<th>E. coli O157:H7 EDL933</th>
<th>S. flexneri 2a SF301</th>
<th>Identity of 2.0 kb UF b</th>
<th>Identity of 2.0 kb DF b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>icdA</td>
<td>21.6</td>
<td>59.8</td>
<td>44.4 (1.7kb, 96%)</td>
<td>1.5</td>
<td>97%</td>
<td>88% (1.7kb, 96%)</td>
</tr>
<tr>
<td>2</td>
<td>ydbL</td>
<td>27.9</td>
<td>6.5</td>
<td>6.3</td>
<td>3.1</td>
<td>88% (1.7kb, 92%)</td>
<td>70% (1.1kb, 94%)</td>
</tr>
<tr>
<td>3</td>
<td>galF</td>
<td>12.1</td>
<td>11.3</td>
<td>14.2</td>
<td>11.4</td>
<td>64% (0.9kb, 93%)</td>
<td>92%</td>
</tr>
<tr>
<td>4</td>
<td>rfaC</td>
<td>11.5</td>
<td>9.5</td>
<td>8.5</td>
<td>9.3</td>
<td>93%</td>
<td>98%</td>
</tr>
<tr>
<td>5</td>
<td>yjiA</td>
<td>17.9</td>
<td>10.8</td>
<td>12.5</td>
<td>10.6 (1.7kb, 96%)</td>
<td>92%</td>
<td>69% (0.9kb, 92%)</td>
</tr>
<tr>
<td>6</td>
<td>yjiY</td>
<td>0.3</td>
<td>0.3</td>
<td>1.0</td>
<td>12.4</td>
<td>98%</td>
<td>88% (1.7kb, 96%)</td>
</tr>
</tbody>
</table>

a These non-tRNA hotspots were identified based on previously reported comparative genomic indexing data derived following analysis of 27 *E. coli* strains against the MG1655 array (Anjum *et al.*, 2003, *Infect. Immun.*, 71, 4674-4683). The authors had identified 49 highly variable segments of the MG1655 chromosomal backbone with 10 or more consecutive CDS absent from at least two strains. Following manual review six non-tRNA putative hotspots were chosen for inclusion in this study. The island sizes are shown to the nearest kilobase (kb). Predicted insertions of at these loci of greater than 1 kb in size are highlighted in bold type to indicate putative genomic islands.

b The identities of the 2 kb upstream flanking regions (UF) and the 2 kb downstream flanking regions (DF) across all the four genomes are calculated by the multiple alignment program ClustalW 1.82 (Chenna, *et al.*, 2003, *Nucleic Acids Res.*, 31, 3497-3500). Note that genomes exhibiting deletions of particular flanking regions were excluded from the corresponding multiple sequence alignments. If the identity of the complete 2 kb flanking sequences was less than 90%, a highly conserved region within the UF or DF region was further investigated. The sizes and identities of these shorter highly conserved regions present within the 2 kb segments themselves are shown in parentheses. Unlike the UF regions for the tRNA sites, the 2 kb UF regions selected for these non-tRNA hotspots contained the corresponding CDS itself.

g The secondary conserved downstream flanking region was inverted with respect to MG1655.
Here the two hotspots, \textit{icdA} and \textit{yjiY} genes, are taken as the examples to do tRNAcc analysis for the non-tRNA sites as the following steps. Please note that there are two slight differences in the tRNA analysis process for the typical tRNA site and the non-tRNA site, which are highlighted with red underlines.

(1) Add the two non-tRNA sites into the tRNA being analysed file as follows with a text editor.

Input file: tRNAcc\input_data\tRNA-being-analysed.dat

<table>
<thead>
<tr>
<th><analysed></th>
<th><tRNA></th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>ileV</td>
</tr>
<tr>
<td>f</td>
<td>alaV</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>leuQ</td>
</tr>
<tr>
<td>f</td>
<td>ssrA</td>
</tr>
<tr>
<td>t</td>
<td>icdA</td>
</tr>
<tr>
<td>t</td>
<td>yjiY</td>
</tr>
</tbody>
</table>

Here, ‘t’ (or ‘f’) denotes the tRNA gene or non-tRNA genes being analysis (or not).

(2) Add the chromosome locations into the tRNA gene files for all the genomes being compared.

Input file: tRNAcc\input_data\NC_000913\tRNA.dat

<table>
<thead>
<tr>
<th><Start></th>
<th><Stop></th>
<th><strand></th>
<th><tRNA></th>
</tr>
</thead>
<tbody>
<tr>
<td>225381</td>
<td>225457</td>
<td>+</td>
<td>ileV</td>
</tr>
<tr>
<td>225500</td>
<td>225575</td>
<td>+</td>
<td>alaV</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4604338</td>
<td>4604424</td>
<td>-</td>
<td>leuQ</td>
</tr>
<tr>
<td>2753615</td>
<td>2753977</td>
<td>+</td>
<td>ssrA</td>
</tr>
<tr>
<td>1194346</td>
<td>1195596</td>
<td>+</td>
<td>icdA</td>
</tr>
<tr>
<td>4587152</td>
<td>4589317</td>
<td>+</td>
<td>yjiY</td>
</tr>
</tbody>
</table>

Note, ‘+’ or ‘-’ symbols for the tRNA sites in the third column denote that the tRNA gene is encoded within the forward or complementary strand, respectively. However, unlike tRNA sites, these symbols for the non-tRNA sites denote the relative locations of the non-tRNA genes with the corresponding variable segments identified by CGI in the forward strand of \textit{E. coli} MG1655 since islands could lie adjacent to either the 3’-end or the 5’-end of the non-tRNA sites. For example, a variable segment is located downstream in the \textit{icdA} gene in the forward strand of \textit{E. coli} MG1655 (click here to link in \textit{coliBASE}). So the symbol is ‘+’. For the \textit{yjiY} site, a CGI-detected variable segment is also located downstream in the \textit{yjiY} gene. (With the subsequent tRNAcc analysis, the
12.4 kb large insertion is found to be located downstream in the \textit{yjiY} gene of \textit{S. flexneri} 2a Sf301 [click here to link in \textit{coliBASE}]).

Semiary operations are performed to the other three tRNA gene files: tRNAcc\textbackslash input\textunderscore data\textbackslash NC\textunderscore 004431\textunderscore tRNA.dat, tRNAcc\textbackslash input\textunderscore data\textbackslash NC\textunderscore 002655\textunderscore tRNA.dat and tRNAcc\textbackslash input\textunderscore data\textbackslash NC\textunderscore 004337\textunderscore tRNA.dat.

3) Run the program Run_IdentifyIsland.bat to find the islands associated the non-tRNA sites.

4) Manually analyse the resulting islands for distinct genome subsets to improve prediction of island boundaries with the aid of the program TabulateIsland. Consequently, the file GI\textunderscore found_checked.dat is generated with a text editor.

5) Make multi-FASTA files containing the 2-kb UF and DF regions for each non-tRNA site using \texttt{ExtractFlank} with the \texttt{-h} option. Unlike the UF regions for the tRNA sites, the 2-kb UF regions selected for these non-tRNA hotspots contained the corresponding gene itself. The batch file Run_ExtractFlank.bat should be changed as the following:

\texttt{ExtractFlank -h tRNA-being-analysed.dat genome-being-compared_4.dat GI-found_checked.dat}

6) Design specific primer pairs for each non-tRNA site based on consensus regions of UF and DF by using Primaclade with the input of ClustalW-derived multiple sequence alignment files.