ICEberg
Browse by ICE    |    Browse by Organism   |    Browse by ICE family
ICE family: Unclassified


#IDICE nameStrainReplicon
11 experimental BTF-37Bacteroides fragilis LV23-
263 experimental CTn86Bacteroides fragilis 86-5443-2-2-
364 experimental CTnBSTBacteroides uniformis WH207-
465 experimental CTnGERM1Bacteroides ovatus-
566 experimental CTnscr94Salmonella enterica subsp. enterica serovar Senftenberg, 5494-57-
667 experimental Tn6000 (EfcTn1)Enterococcus casseliflavus 664.1H1-
771 experimental ICEEc2Escherichia coli BEN374-
874 experimental ICEEcIHE3034-1Escherichia coli IHE3034-
977 experimental ICESe2Streptococcus equi subsp. equi 4047NC_012471
1092 experimental Tn1549Enterococcus faecalis BM4382-
1193 experimental Tcr Emr 7853Bacteroides thetaiotaomicron 7853-
1294 experimental Tn5030Bacteroides sp.-
1396 experimental Tn5276Lactococcus lactis R5-
1497 experimental Tn5281Enterococcus faecalis-
1598 experimental Tn5307Lactococcus lactis 11454-
16101 experimental Tn5385Enterococcus faecalis JH2-7-
17102 experimental Tn5386Enterococcus faecium D344R-
18107 experimental TnB1230Butyrivibrio fibrisolvens 1.230-
19110 experimental bph-salPseudomonas putida KF715-
20111 experimental LpPI-1Legionella pneumophila subsp. pneumophila str. Philadelphia 1-
21115 in_silico ICESe3Salmonella enterica SARC16-
22117 experimental pSAM2 {AICE}Streptomyces ambofaciens ATCC 15154 B3-
23118 experimental pSA1.1 {AICE}Streptomyces cyaneus ATCC 14921-
24119 experimental pIJ408 {AICE}Streptomyces glaucescens GLA000-
25120 experimental pIJ110 {AICE}Streptomyces parvulus ATCC 12434-
26122 experimental pMEA100 {AICE}Amycolatopsis mediterranei LBG A3136-
27123 experimental pMEA300 {AICE}Amycolatopsis methanolica NCIB11946-
28124 experimental pRS01Lactococcus lactis subsp. lactis ML3-
29127 in_silico ICEKpn342-1Klebsiella pneumoniae 342NC_011283
30150 experimental pMR2 {AICE}Micromonospora rosaria SCC2095, NRRL3718-
31151 experimental pSG1 {AICE}Streptomyces griseus NRRL3851-
32152 experimental CTn9343Bacteroides fragilis NCTC 9343NC_003228
33156 in_silico pSE102 {AICE}Saccharopolyspora erythraea NRRL 2338NC_009142
34157 experimental pSE211 {AICE}Saccharopolyspora erythraea NRRL 2338NC_009142
35158 in_silico pSE222 {AICE}Saccharopolyspora erythraea NRRL 2338NC_009142
36159 experimental TnGBS2 (genomic island X)Streptococcus agalactiae NEM316NC_004368
37163 experimental SLP1 {AICE}Streptomyces coelicolor A3(2)NC_003888
38164 ICEVchNEV2Vibrio cholerae non-O1, non-O139 NEV2-
39167 Tn6111Clostridium difficile QCD-32G58-
40168 Tn6110Clostridium difficile QCD-23M63-
41169 Tn6107Clostridium difficile QCD-23M63-
42170 in_silico Tn6103Clostridium difficile R20291-
43171 Tn6073Clostridium difficile QCD-23M63-
44183 in_silico 2096-RD.2Streptococcus pyogenes MGAS2096NC_008023
45206 in_silico AICEFraal5456 {AICE}Frankia alni ACN14aNC_008278
46207 in_silico AICEFranean5323 {AICE}Frankia sp. EAN1pecNC_009921
47208 in_silico AICEFranean6303 {AICE}Frankia sp. EAN1pecNC_009921
48209 in_silico AICEMflv3036 {AICE}Mycobacterium gilvum PYR-GCKNC_009338
49210 in_silico AICESare1562 {AICE}Salinispora arenicola CNS-205NC_009953
50211 in_silico AICESare1922 {AICE}Salinispora arenicola CNS-205NC_009953
51212 in_silico AICESav3708 {AICE}Streptomyces avermitilis MA-4680NC_003155
52213 in_silico AICESav3728 {AICE}Streptomyces avermitilis MA-4680NC_003155
53214 in_silico AICESco3250 {AICE}Streptomyces coelicolor A3(2)NC_003888
54215 in_silico AICESco5349 {AICE}Streptomyces coelicolor A3(2)NC_003888
55216 in_silico AICEStrop0058 {AICE}Salinispora tropica CNB-440NC_009380
56232 in_silico ICESsu(BM407)1Streptococcus suis BM407NC_012926
57237 in_silico AICESare1208 {AICE}Salinispora arenicola CNS-205NC_009953
58238 in_silico AICESco3937 {AICE}Streptomyces coelicolor A3(2)NC_003888
59239 in_silico AICESco3997 {AICE}Streptomyces coelicolor A3(2)NC_003888
60242 experimental HHGI1Helicobacter hepaticus ATCC 51449NC_004917
61290 in_silico CdiA1Clostridium difficile-
62291 in_silico CdiA2Clostridium difficile-
63292 in_silico CdiA3Clostridium difficile-
64293 in_silico CdiB2Clostridium difficile-
65294 in_silico CdiB3Clostridium difficile-
66295 in_silico CdiB4Clostridium difficile-
67296 in_silico EfaA4Enterococcus faecalis-
68297 in_silico EfaB5Enterococcus faecalis-
69298 in_silico EfaC1Enterococcus faecalis-
70299 in_silico EfaC2Enterococcus faecalis-
71300 in_silico EfaD2Enterococcus faecalis-
72301 in_silico SeqA6Streptococcus equi-
73302 in_silico SmuEStreptococcus mutans UAB159-
74322 in_silico ICESgal1Streptococcus gallolyticus UCN34NC_013798
75375 experimental ICEPm1Proteus mirabilis HI4320NC_010554
76376 in_silico ICEEfaV583-1Enterococcus faecalis V583NC_004668
77381 in_silico ICEDda3937-1Dickeya dadantii 3937NC_014500
78382 experimental Tn5382(5-F9)Streptococcus lutetiensis 5-F9-
79384 in_silico ICEPaePA14-1Pseudomonas aeruginosa UCBPP-PA14NC_008463
80387 in_silico CTnPg1-bPorphyromonas gingivalis ATCC 33277NC_010729
81388 in_silico CTnPg2Porphyromonas gingivalis ATCC 33277NC_010729
82389 in_silico CTnPg3Porphyromonas gingivalis ATCC 33277NC_010729
83390 in_silico ICEBvu8482-1Bacteroides vulgatus ATCC 8482NC_009614
84391 in_silico ICEBvu8482-2Bacteroides vulgatus ATCC 8482NC_009614
85394 experimental Tn6098Lactococcus lactis subsp. lactis KF147NC_013656
86395 in_silico TnSmu1Streptococcus mutans UA159AE014133
87396 experimental ICEHpyP12-1Helicobacter pylori P12NC_011498
88397 in_silico ICEHpyP12-2Helicobacter pylori P12NC_011498
89399 in_silico CTn2Clostridium difficile 630NC_009089
90401 in_silico CTn5Clostridium difficile 630NC_009089
91404 experimental Tn5301Lactococcus lactis FI5876-
92436 experimental PPHGI-1Pseudomonas syringae pv. phaseolicola 1302A-
93437 in_silico ICEKpnHS11286-2Klebsiella pneumoniae HS11286CP003200
94438 experimental phn IslandDelftia sp. Cs1-4NC_015563
95439 experimental ICESp2905Streptococcus pyogenes iB21-
96440 experimental ICEPmu1Pasteurella multocida 36950NC_016808
97441 in_silico ICEHso2336-1Haemophilus somnus 2336NC_010519
98443 in_silico pACPL {AICE}Actinoplanes sp. SE50/110NC_017803
99448 in_silico Tn6202Enterococcus faecalis N00-410-
100464 in_silico ICESe4Salmonella enterica subsp. enterica serovar Hadar 18-
101465 in_silico ICECroICC168-1Citrobacter rodentium ICC168NC_013716
102466 in_silico ICEPluTTO1-1Photorhabdus luminescens subsp. laumondii TTO1NC_005126
103467 in_silico HAI2Erwinia carotovora subsp. atroseptica SCRI1043NC_004547
104468 in_silico AICESbi5134 {AICE}Streptomyces bingchenggensis BCW-1
105469 in_silico AICESbi6637 {AICE}Streptomyces bingchenggensis BCW-1
106470 in_silico AICEScab53631 {AICE}Streptomyces scabiei 87.22
107471 in_silico AICEScab56241 {AICE}Streptomyces scabiei 87.22
108472 in_silico AICEScatt35120 {AICE}Streptomyces cattleya DSM
109473 in_silico AICESfla2573 {AICE}Streptomyces flavogriseus ATCC
110474 in_silico AICESfla3678 {AICE}Streptomyces flavogriseus ATCC
111475 in_silico AICEShjg4985 {AICE}Streptomyces hygroscopicus jinggangensis
112476 in_silico AICEShjg5087 {AICE}Streptomyces hygroscopicus jinggangensis
113477 in_silico AICESven1927 {AICE}Streptomyces venezuelae ATCC
114478 in_silico AICESven2473 {AICE}Streptomyces venezuelae ATCC
115479 in_silico AICESven3996 {AICE}Streptomyces venezuelae ATCC
116480 in_silico Amed5915 {AICE}Amycolatopsis mediterranei U32-
117481 in_silico Amed6149 {AICE}Amycolatopsis mediterranei U32-
118482 in_silico Amed8785 {AICE}Amycolatopsis mediterranei U32-
119483 in_silico Amir0172 {AICE}Actinosynnema mirum DSM 43827-
120484 in_silico Amir0924 {AICE}Actinosynnema mirum DSM 43827-
121485 in_silico Amir1118 {AICE}Actinosynnema mirum DSM 43827-
122486 in_silico Amir1294 {AICE}Actinosynnema mirum DSM 43827-
123487 in_silico Amir6364 {AICE}Actinosynnema mirum DSM 43827-
124488 in_silico Avis01496 {AICE}Actinomyces viscosus C505-
125489 in_silico Blon0288 {AICE}Bifidobacterium longum subsp. infantis ATCC 15697-
126490 in_silico BreLI {AICE}Corynebacterium casei LMG-
127491 in_silico Caci8560 {AICE}Catenulispora acidiphila DSM 44928-
128492 in_silico Faln1739 {AICE}Frankia alni ACN14a-
129493 in_silico Faln2929 {AICE}Frankia alni ACN14a-
130495 in_silico Fcci1033 {AICE}Frankia sp. CcI3-
131496 in_silico Fcci3390 {AICE}Frankia sp. CcI3-
132497 in_silico Fcci4274 {AICE}Frankia sp. CcI3-
133498 in_silico Fdat2245 {AICE}Frankia symbiont of-
134499 in_silico Fdat4298 {AICE}Frankia symbiont of-
135501 in_silico Fean5518 {AICE}Frankia sp. EAN1pec-
136502 in_silico Fean5534 {AICE}Frankia sp. EAN1pec-
137504 in_silico FeuI0027 {AICE}Frankia sp. EuI1c-
138505 in_silico FeuI6863 {AICE}Frankia sp. EuI1c-
139506 in_silico Feun0941 {AICE}Frankia sp. EUN1f-
140507 in_silico Feun3577 {AICE}Frankia sp. EUN1f-
141508 in_silico Ical0013 {AICE}Intrasporangium calvum DSM-
142509 in_silico Kfla0394 {AICE}Kribbella flavida DSM-
143510 in_silico Kfla2094 {AICE}Kribbella flavida DSM-
144511 in_silico Kfla3349 {AICE}Kribbella flavida DSM-
145512 in_silico Kfla5558 {AICE}Kribbella flavida DSM-
146513 in_silico Mab2101 {AICE}Mycobacterium abscessus ATCC 19977-
147514 in_silico Mav3790 {AICE}Mycobacterium avium 104-
148515 in_silico Mcag02126 {AICE}Micromonospora sp. ATCC-
149516 in_silico Mcag02949 {AICE}Micromonospora sp. ATCC-
150517 in_silico Mcag03407 {AICE}Micromonospora sp. ATCC-
151519 in_silico Micau0013 {AICE}Micromonospora aurantiaca ATCC-
152520 in_silico Micau5363 {AICE}Micromonospora aurantiaca ATCC-
153521 in_silico Mjls3177 {AICE}Mycobacterium sp. JLS-
154522 in_silico Mkan24688 {AICE}Mycobacterium kansasii ATCC-
155523 in_silico Mkan25525 {AICE}Mycobacterium kansasii ATCC-
156524 in_silico Mkms3227 {AICE}Mycobacterium sp. KMS-
157525 in_silico ML0645 {AICE}Micromonospora sp. L5-
158526 in_silico ML3146 {AICE}Micromonospora sp. L5-
159527 in_silico ML6109 {AICE}Micromonospora sp. L5-
160528 in_silico Mmar2129 {AICE}Mycobacterium marinum M-
161529 in_silico Mmar3124 {AICE}Mycobacterium marinum M-
162530 in_silico Mmcs3165 {AICE}Mycobacterium sp. MCS-
163531 in_silico Mmu2220 {AICE}Mobiluncus mulieris ATCC-
164532 in_silico Mmul0108 {AICE}Mobiluncus mulieris FB024-16-
165533 in_silico Mpar1216 {AICE}Mycobacterium parascrofulaceum ATCC-
166534 in_silico Namu0644 {AICE}Nakamurella multipartita DSM 44233-
167535 in_silico Nbac00580 {AICE}Nocardioidaceae bacterium Broad-1-
168536 in_silico Ndas0604 {AICE}Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111-
169537 in_silico Ndas5293 {AICE}Nocardiopsis dassonvillei subsp.-
170538 in_silico Nfa7110 {AICE}Nocardia farcinica IFM 10152-
171539 in_silico PAISa1 {AICE}Streptomyces acidiscabies 84-C104-
172540 in_silico PAISs1 {AICE}Streptomyces scabiei 87.22-
173541 in_silico PAIst {AICE}Streptomyces turgidiscabies Car8-
174542 experimental pCM32 {AICE}Saccharopolyspora endophytica YIM-
175546 in_silico pSAM3 {AICE}Streptomyces ambofaciens DSM
176549 in_silico PseP00040 {AICE}Pseudonocardia sp. P1-
177550 in_silico PseP00399 {AICE}Pseudonocardia sp. P1-
178551 in_silico PseP09922 {AICE}Pseudonocardia sp. P1-
179552 in_silico PseP09967 {AICE}Pseudonocardia sp. P1-
180553 in_silico pSLS {AICE}Streptomyces laurentii plasmid-
181554 in_silico pWTY27 {AICE}Streptomyces sp. Y27-
182555 in_silico Sact3892 {AICE}Streptomyces cf. griseus-
183556 in_silico Salb19358 {AICE}Streptomyces albus J1074-
184561 in_silico Sav3980 {AICE}Streptomyces avermitilis MA-4680-
185562 in_silico Scab29251 {AICE}Streptomyces scabiei 87.22-
186563 in_silico Scab53471 {AICE}Streptomyces scabiei 87.22-
187566 in_silico Sgha02332 {AICE}Streptomyces ghanaensis ATCC-
188567 in_silico Sgha02355 {AICE}Streptomyces ghanaensis ATCC-
189568 in_silico Sgha03242 {AICE}Streptomyces ghanaensis ATCC-
190569 in_silico Sgha03409 {AICE}Streptomyces ghanaensis ATCC-
191570 in_silico Sgha04156 {AICE}Streptomyces ghanaensis ATCC-
192571 in_silico Sgha04659 {AICE}Streptomyces ghanaensis ATCC-
193572 in_silico Sgha07854 {AICE}Streptomyces ghanaensis ATCC-
194573 in_silico Sgm0673 {AICE}Streptomyces griseoaurantiacus M045-
195574 in_silico Sgm0896 {AICE}Streptomyces griseoaurantiacus M045-
196575 in_silico Sgm1455 {AICE}Streptomyces griseoaurantiacus M045-
197576 in_silico Sgm1472 {AICE}Streptomyces griseoaurantiacus M045-
198577 in_silico Sgm3228 {AICE}Streptomyces griseoaurantiacus M045-
199578 in_silico Sgm6684 {AICE}Streptomyces griseoaurantiacus M045-
200579 in_silico Sgri2908 {AICE}Streptomyces griseus subsp. griseus NBRC 13350-
201580 in_silico Sgri3345 {AICE}Streptomyces griseus subsp. griseus NBRC 13350-
202581 in_silico Sgri3599 {AICE}Streptomyces griseus subsp. griseus NBRC 13350-
203582 in_silico Shyg06393 {AICE}Streptomyces hygroscopicus ATCC-
204584 in_silico Sros0148 {AICE}Streptosporangium roseum DSM 43021-
205585 in_silico Sros0691 {AICE}Streptosporangium roseum DSM 43021-
206586 in_silico Sros8660 {AICE}Streptosporangium roseum DSM 43021-
207587 in_silico Srot1958 {AICE}Segniliparus rotundus DSM 44985-
208588 in_silico Srss11963 {AICE}Streptomyces roseosporus NRRL-
209589 in_silico Srss12737 {AICE}Streptomyces roseosporus NRRL-
210590 in_silico Ssa3F01080 {AICE}Streptomyces sp. SA3-
211591 in_silico Ssa3F04245 {AICE}Streptomyces sp. SA3-
212592 in_silico Ssa3G05211 {AICE}Streptomyces sp. SA3-
213593 in_silico Ssa3G23283 {AICE}Streptomyces sp. SA3-
214594 in_silico Ssbg00935 {AICE}Streptomyces sp. SPB74-
215595 in_silico Ssbg01022 {AICE}Streptomyces sp. SPB74-
216596 in_silico Ssbg01560 {AICE}Streptomyces sp. SPB74-
217597 in_silico Ssbg05806 {AICE}Streptomyces sp. SPB74-
218598 in_silico Sslg03184 {AICE}Streptomyces sp. SPB78-
219599 in_silico Sslg03435 {AICE}Streptomyces sp. SPB78-
220600 in_silico Sslg03699 {AICE}Streptomyces sp. SPB78-
221601 in_silico Sslg04033 {AICE}Streptomyces sp. SPB78-
222602 in_silico Ssmg00105 {AICE}Amycolatopsis sp. (Streptomyces sp. AA4)-
223603 in_silico Ssmg01881 {AICE}Amycolatopsis sp. (Streptomyces sp. AA4)-
224604 in_silico Ssng02684 {AICE}Streptomyces sp. C-
225605 in_silico Ssng04895 {AICE}Streptomyces sp. C-
226606 in_silico Ssqg03858 {AICE}Streptomyces viridochromogenes DSM-
227607 in_silico Ssqg04320 {AICE}Streptomyces viridochromogenes DSM-
228608 in_silico Ssrg02560 {AICE}Streptomyces griseoflavus Tu4000-
229609 in_silico Ssrg02924 {AICE}Streptomyces griseoflavus Tu4000-
230610 in_silico Ssrg03280 {AICE}Streptomyces griseoflavus Tu4000-
231611 in_silico Ssrg03338 {AICE}Streptomyces griseoflavus Tu4000-
232612 in_silico Ssrg03707 {AICE}Streptomyces griseoflavus Tu4000-
233613 in_silico Ssvi03443 {AICE}Streptomyces sviceus ATCC-
234614 in_silico Ssvi10247 {AICE}Streptomyces sviceus ATCC-
235615 in_silico Sttu1919 {AICE}Streptomyces sp. Tu6071-
236616 in_silico Sttu3307 {AICE}Streptomyces sp. Tu6071-
237617 in_silico Sttu3345 {AICE}Streptomyces sp. Tu6071-
238618 in_silico Svio1282 {AICE}Streptomyces violaceusniger Tu-
239619 in_silico Svio4238 {AICE}Streptomyces violaceusniger Tu-
240620 in_silico Svio4843 {AICE}Streptomyces violaceusniger Tu-
241621 in_silico Svio5150 {AICE}Streptomyces violaceusniger Tu-
242622 in_silico Svio6891 {AICE}Streptomyces violaceusniger Tu-
243623 in_silico Svir23910 {AICE}Saccharomonospora viridis DSM 43017-
244624 in_silico Tbis0078 {AICE}Thermobispora bispora DSM 43833-
245625 in_silico Tcur0039 {AICE}Thermomonospora curvata DSM 43183-
246626 in_silico Tcur4536 {AICE}Thermomonospora curvata DSM 43183-
247627 in_silico TR2Streptomyces scabiei 87.22
248628 in_silico Vmar01700 {AICE}Verrucosispora maris AB-18-032-
249629 in_silico Vmar03840 {AICE}Verrucosispora maris AB-18-032-
250630 in_silico Vmar04520 {AICE}Verrucosispora maris AB-18-032-
251632 in_silico Aari04070Arthrobacter arilaitensis Re117-
252633 in_silico Bdp0984Bifidobacterium dentium Bd1-
253634 in_silico Bifden02232Bifidobacterium dentium ATCC 27678-
254635 in_silico Bifden0887Bifidobacterium dentium ATCC 27679-
255636 in_silico Bifli0482Bifidobacterium longum subsp. infantis ATCC 55813-
256637 in_silico Blig00904Bifidobacterium longum subsp. infantis CCUG 52486-
257639 in_silico CMGEJS14Streptococcus suis JS14-
258640 in_silico CMGESC070731Streptococcus suis SC070731-
259641 in_silico CMGETZ080501Streptococcus suis TZ080501-
260642 in_silico CMGEYY060816Streptococcus suis YY060816-
261643 in_silico Cormat00753Corynebacterium matruchotii ATCC 33806-
262664 in_silico Fcci3350Frankia sp. CcI3-
263665 in_silico ICE_Sol3089_Tn916Streptococcus cristatus AS 1.3089-
264666 in_silico ICE_18RS21_rplLStreptococcus agalactiae 18RS21-
265667 in_silico ICE_18RS21_tRNALysStreptococcus agalactiae 18RS21-
266668 in_silico ICE_2603_tRNALysStreptococcus agalactiae 2603V/R
267669 experimental ICE_515_tRNALysStreptococcus agalactiae 515-
268670 in_silico ICE_CCH620_rpsIStreptococcus agalactiae CCH620-
269671 in_silico ICE_COH1_guaAStreptococcus agalactiae COH1-
270672 in_silico ICE_COH1_tRNALysStreptococcus agalactiae COH1-
271673 experimental ICE_FSLS3-026_tRNALysStreptococcus agalactiae FSL S3-026-
272674 in_silico ICE_H36B_rplLStreptococcus agalactiae H36B-
273675 in_silico ICE_Sag018883_rplLStreptococcus agalactiae 09mas018883-
274676 in_silico ICE_Sag018883_Tn916Streptococcus agalactiae 09mas018883-
275677 in_silico ICE_Sag2603_rplLStreptococcus agalactiae 2603V/R
276678 in_silico ICE_SagILRI005_rplLStreptococcus agalactiae ILRI005-
277679 in_silico ICE_SagILRI112_Tn916Streptococcus agalactiae ILRI112-
278680 in_silico ICE_SagNEM316_rplLStreptococcus agalactiae NEM316
279682 in_silico ICE_SanC238_rplLStreptococcus anginosius F0211-
280683 in_silico ICE_SanC238_rumAStreptococcus anginosius F0211-
281684 in_silico ICE_SanC238_Tn916Streptococcus anginosius F0211-
282685 in_silico ICE_SanC238_TnGBS2Streptococcus anginosius F0211-
283686 in_silico ICE_SanC238_tRNAleuStreptococcus anginosius F0211-
284687 in_silico ICE_SanMAS624_hsdMStreptococcus anginosus subsp. whileyi MAS624-
285688 in_silico ICE_SanMAS624_TnGBS1Streptococcus anginosus subsp. whileyi MAS624-
286689 in_silico ICE_ScoC1050_mutTStreptococcus constellatus subsp. pharyngis C1050-
287690 in_silico ICE_ScoC1050_rumAStreptococcus constellatus subsp. pharyngis C1050-
288691 in_silico ICE_ScoC1050_Tn916Streptococcus constellatus subsp. pharyngis C1050-
289692 in_silico ICE_ScoC1050_TnGBS2Streptococcus constellatus subsp. pharyngis C1050-
290693 in_silico ICE_ScoC232_rumAStreptococcus constellatus subsp. pharyngis C232-
291694 in_silico ICE_ScoC232_TnGBS2Streptococcus constellatus subsp. pharyngis C232-
292695 in_silico ICE_Sdy12394_lysSStreptococcus dysgalactiae subsp. Equisimilis ATCC 12394-
293696 in_silico ICE_Sdy12394_rpsI Streptococcus dysgalactiae subsp. Equisimilis ATCC 12394-
294697 in_silico ICE_Sdy12394_rumAStreptococcus dysgalactiae subsp. Equisimilis ATCC 12394-
295698 in_silico ICE_Sdy2713_rumAStreptococcus dysgalactiae subsp. equisimilis AC-2713-
296699 in_silico ICE_Sdy2713_tRNAthrStreptococcus dysgalactiae subsp. equisimilis AC-2713-
297700 in_silico ICE_SdyRE378_rpsI Streptococcus dysgalactiae subsp. equisimilis RE378-
298701 in_silico ICE_Sga2069_rpmGStreptococcus gallolyticus 2069-
299702 in_silico ICE_Sga43143_ftsKStreptococcus gallolyticus ATCC 43143-
300703 in_silico ICE_Sga43143_rpsI Streptococcus gallolyticus ATCC 43143-
301704 in_silico ICE_Sga43143_Tn916Streptococcus gallolyticus ATCC 43143-
302705 in_silico ICE_Sga43143_tRNAlysStreptococcus gallolyticus ATCC 43143-
303706 in_silico ICE_SgaUCN34_ftsKStreptococcus gallolyticus UCN34-
304707 in_silico ICE_SgaUCN34_Tn916Streptococcus gallolyticus UCN34-
305708 in_silico ICE_SinfCJ18_TnGBS2Streptococcus infantarius subsp. infantarius CJ18-
306709 in_silico ICE_SintB196_NDStreptococcus intermedius B196-
307710 in_silico ICE_SintB196_rumAStreptococcus intermedius B196-
308711 in_silico ICE_SintB196_tRNAleuStreptococcus intermedius B196-
309712 in_silico ICE_SintC270_rplLStreptococcus intermedius C270-
310713 in_silico ICE_SintC270_rumAStreptococcus intermedius C270-
311714 in_silico ICE_SintC270_Tn916Streptococcus intermedius C270-
312715 in_silico ICE_Slu033_Tn916Streptococcus lutetiensis 033-
313716 in_silico ICE_Slu033_TnGBS1Streptococcus lutetiensis 033-
314717 in_silico ICE_SmaDC198_rumAStreptococcus macedonicus ACA-DC 198-
315718 in_silico ICE_SmaDC198_TnGBS2Streptococcus macedonicus ACA-DC 198-
316719 in_silico ICE_SmiB6_guaAStreptococcus mitis B6-
317720 in_silico ICE_Sol3089_TnGBS2Streptococcus cristatus AS 1.3089-
318721 in_silico ICE_SorUo5_Tn916Streptococcus oralis Uo5-
319722 in_silico ICE_Sparas15912_rpmGStreptococcus parasanguinis ATCC 15912-
320723 in_silico ICE_SparasFW213_ebfCStreptococcus parasanguinis FW213-
321724 in_silico ICE_SparasFW213_rplLStreptococcus parasanguinis FW213-
322725 in_silico ICE_SparauNCFD2020_rplLStreptococcus parauberis NCFD 2020-
323726 in_silico ICE_SparauNCFD2020_rpsIStreptococcus parauberis NCFD 2020-
324727 in_silico ICE_Spas43144_rplLStreptococcus pasteurianus ATCC 43144-
325728 in_silico ICE_Spn6706B_rbgAStreptococcus pneumoniae 670-6B-
326729 in_silico ICE_Spn6706B_Tn916Streptococcus pneumoniae 670-6B-
327730 in_silico ICE_Spn700669_rplLStreptococcus pneumoniae ATCC 700669-
328731 in_silico ICE_SpnA026_Tn916Streptococcus pneumoniae A026-
329732 in_silico ICE_SpnHun19A_Tn916Streptococcus pneumoniae Hungary19A-6-
330733 in_silico ICE_SpnP1031_rbgAStreptococcus pneumoniae P1031-
331734 in_silico ICE_SpnP1031_Tn916Streptococcus pneumoniae P1031-
332735 in_silico ICE_SpnST556_Tn916Streptococcus pneumoniae ST556-
333736 in_silico ICE_SpnTai19F_Tn916Streptococcus pneumoniae Taiwan19F-14-
334737 in_silico ICE_SpnTCH8431_Tn916Streptococcus pneumoniae TCH8431/19A-
335738 in_silico ICE_SpsIS7493_Tn916Streptococcus lutetiensis 033-
336739 in_silico ICE_SpyHKU_rumAStreptococcus dysgalactiae subsp. Equisimilis ATCC 12394-
337740 in_silico ICE_SpyHKU_Tn916Streptococcus dysgalactiae subsp. Equisimilis ATCC 12394-
338741 in_silico ICE_SsaB35_rpsIStreptococcus salivarius B35-
339742 in_silico ICE_SsaB57_fdaStreptococcus salivarius B57-
340743 experimental ICE_SsaF1-4_fdaStreptococcus salivarius F1-4-
341744 in_silico ICE_SsaF1-8_rpmGStreptococcus salivarius F1-8-
342745 experimental ICE_SsaF4-2_fdaStreptococcus salivarius F4-2-
343746 in_silico ICE_SsaF6-1_rpsIStreptococcus salivarius F6-1-
344747 in_silico ICE_SsaL22_fdaStreptococcus salivarius L22-
345748 in_silico ICE_SsaL50_rpsIStreptococcus salivarius L50-
346749 in_silico ICE_SsaL60_rpsIStreptococcus salivarius L60-
347750 in_silico ICE_SsaL64_fdaStreptococcus salivarius L64-
348751 in_silico ICE_SsaN20_rpsIStreptococcus salivarius N20-
349752 in_silico ICE_SsaN5_fdaStreptococcus salivarius N5-
350753 in_silico ICE_SsaT93_fdaStreptococcus salivarius T93-
351754 in_silico ICE_SspIG2_rumAStreptococcus sp. I-G2-
352755 in_silico ICE_SsuD9_rbgAStreptococcus suis D9-
353756 in_silico ICE_SsuD9_rplLStreptococcus suis D9-
354757 in_silico ICE_SsuHAH33_Tn916Streptococcus suis 98HAH33-
355758 in_silico ICE_SsuSC070731_rumAStreptococcus suis SC070731-
356759 in_silico ICE_SsuSC84_Tn916Streptococcus suis SC84-
357760 in_silico ICE_SsuSS12_rplLStreptococcus suis SS12-
358761 in_silico ICE_SsuT15_mutTStreptococcus-
359762 in_silico ICE_SsuT15_rbgAStreptococcus-
360763 in_silico ICE_SsuTL13_Tn916Streptococcus suis TL13-
361764 in_silico ICE_SthJIM8232_rplLStreptococcus thermophilus JIM 8232-
362765 in_silico ICE_SUB19608_tRNA(Lys)Streptococcus agalactiae-
363766 in_silico ICEA-IV(5632)Mycoplasma agalactiae 5632
364769 in_silico ICEC(27343)Mycoplasma hyopneumoniae 168
365772 in_silico ICE-emm12Streptococcus pyogenes emm12 HKU16
366773 in_silico ICEF-III(JER)Mycoplasma capricolum subsp. capricolum ATCC 27343
367774 in_silico ICEH-1(168)Mycoplasma fermentans JER
368775 in_silico ICEH-2(168)Mycoplasma fermentans JER
369776 in_silico ICE-HKU30Streptococcus pyogenes emm12 HKU30-
370777 in_silico ICE-HKU372Streptococcus pyogenes emm12 HKU372-
371781 in_silico ICENsui070teStreptococcus suis NSUI070 serotype 2-
372782 in_silico ICENsui34teStreptococcus suis NSUI034 serotype 2-
373783 in_silico ICENsui53teStreptococcus suis NSUI053 serotype 2-
374784 in_silico ICENsui60eStreptococcus suis NSUI060 serotype 2-
375785 in_silico ICENsui60tStreptococcus suis NSUI060 serotype 2-
376787 experimental ICESa2603/ICESsu32457Streptococcus pyogenes 12SN-Tc-
377788 in_silico ICESag(RR1)Streptococcus agalactiae CH-2-
378789 in_silico ICESag(RR2)Streptococcus agalactiae CS01-
379790 experimental ICESag236Streptococcus agalactiae Sag236-
380792 in_silico ICESag37741Streptococcus agalactiae CCUG 37741-
381793 experimental ICESagTR7Streptococcus agalactiae SagTR7-
382794 in_silico ICESanJ4206Streptococcus anginosus J4206
383795 in_silico ICESanSA1Streptococcus anginosus SA1-
384802 in_silico ICESCPC232-1Streptococcus constellatus subsp. pharyngis C232-
385803 in_silico ICESCPC232-2Streptococcus constellatus subsp. pharyngis C232-
386804 in_silico ICESCPC232-3Streptococcus constellatus subsp. pharyngis C232-
387807 in_silico ICESGB76Streptococcus agalactiae SGB76-
388808 in_silico ICESIB196-1Streptococcus intermedius B196-
389809 in_silico ICESIB196-2Streptococcus intermedius B196-
390810 in_silico ICESIB196-3Streptococcus intermedius B196-
391811 experimental ICESluvanStreptococcus lutetiensis 5-F9-
392812 experimental ICESp1116Streptococcus pyogenes A-3-
393813 in_silico ICESp23FST81 [ICESpPN1]Streptococcus pneumoniae PN1-
394814 experimental ICESp2906Streptococcus pyogenes iB21-
395823 in_silico ICESpST344-1Streptococcus pneumoniae ST344 NT 110 58-
396824 in_silico ICESpST344-2Streptococcus pneumoniae ST344 NT 110 58-
397825 in_silico ICESpSTAB10015Streptococcus pyogenes M/emm28 STAB10015-
398829 experimental ICESsu05SC260Streptococcus suis 05SC260-
399830 in_silico ICESsuD12Streptococcus suis D12-
400833 in_silico ICESsuJH1301Streptococcus suis JH1301-
401834 in_silico ICESsuJH1308-1Streptococcus suis JH1308-
402835 in_silico ICESsuJH1308-2Streptococcus suis JH1308-
403836 in_silico ICESsuLP081102Streptococcus suis LP081102-
404837 experimental ICESsuNC28Streptococcus suis nc286A7-
405840 in_silico ICESsuZJ20091101-1Streptococcus suis ZJ20091101-
406841 in_silico ICESsuZJ20091101-2Streptococcus suis ZJ20091101-
407844 in_silico Intca3128Intrasporangium calvum DSM-
408845 in_silico Jnb01205Janibacter sp. HTCC2649-
409846 in_silico Momu1886Mobiluncus mulieris 28-1-
410847 in_silico Mypa0124Mycobacterium parascrofulaceum ATCC-
411848 in_silico Nbcg01645Nocardioidaceae bacterium Broad-1-
412849 in_silico Noca1590Nocardioides sp. JS614-
413850 in_silico Noca2264Nocardioides sp. JS614-
414851 in_silico OG1RF-CTn homologueEnterococcus faecalis-
415852 in_silico Rode01259Rothia dentocariosa M567-
416854 in_silico Ssag02651Streptomyces sp. Mg1-
417855 in_silico Tn1549-LikeClostridium difficile AI0499-
418861 experimental Tn6194-likeClostridium difficile CII7-
419864 in_silico Tn6224Lactobacillus salivarius JCM 1046 plasmid pCTN1046-
420871 in_silico Tn950Enterococcus faecium-
421876 experimental ICE_SagNEM316_TnGBS1_1Streptococcus agalactiae NEM316-
422877 in_silico ICE_SagNEM316_TnGBS1_2Streptococcus agalactiae NEM316-
423878 in_silico ICE_SagNEM316_TnGBS1_3Streptococcus agalactiae NEM316-
424879 in_silico TnGBS2.2Streptococcus agalactiae ATCC 13813-
425880 in_silico TnGBS2.3Streptococcus agalactiae Wc3-
426881 in_silico TnGBS2.4Streptococcus agalactiae CZ183-
427882 in_silico TnGBS2.5Streptococcus agalactiae 1122-
428883 in_silico TnGBS2.6Streptococcus agalactiae 2584-
429884 in_silico TnGBS2.7Streptococcus agalactiae FSL S3-026-
430887 in_silico TnSang2.1Streptococcus anginosus SK52-
431889 in_silico TnScons2.1Streptococcus constellatus SK1060-
432890 in_silico TnSdys2.1Streptococcus dysgalactiae subsp. Equisimilis GGS 124-
433891 in_silico TnSdys2.2Streptococcus dysgalactiae subsp. Equisimilis ATCC 12394-
434894 in_silico ICE_SgaUCN34_TnGBS2Streptococcus gallolyticus UCN34-
435895 in_silico ICE_Sga2069_TnGBS2_1Streptococcus gallolyticus ATCC BAA-2069-
436896 in_silico TnSgallo2.3Streptococcus gallolyticus ATCC BAA-2069
437897 in_silico TnSict2.1Streptococcus ictaluri 707-05-
438898 in_silico TnSict2.2Streptococcus ictaluri 707-05-
439901 in_silico TnSinf2.1Streptococcus infantis SK970-
440902 in_silico TnSinfta2.1Streptococcus infantarius ATCC BAA-102-
441904 in_silico TnSmit2.1Streptococcus mitis SK597-
442905 in_silico TnSmit2.2Streptococcus mitis SK1073-
443906 in_silico TnSoral2.1Streptococcus oralis ATCC 35037-
444907 in_silico TnSoral2.2Streptococcus oralis SK255-
445909 in_silico TnSpast2.1Streptococcus pasteurianus ATCC 43144-
446912 in_silico TnSsang2.1Streptococcus sanguinis ATCC 49296-
447913 in_silico TnSsang2.2Streptococcus sanguinis SK1059-
448914 in_silico TnSsang2.3Streptococcus sanguinis SK49-
449915 in_silico TnSsang2.4Streptococcus sanguinis SK72-
450916 in_silico TnSsang2.5Streptococcus sanguinis ATCC29667-
451917 in_silico TnSsang2.6Streptococcus sanguinis SK340-
452918 in_silico TnSsang2.7Streptococcus sanguinis SK1058-
453925 in_silico TnSsob2.1Streptococcus sobrinus TCI-396-
454926 in_silico TnSsob2.2Streptococcus sobrinus TCI-345-
455927 in_silico TnSsob2.3Streptococcus sobrinus TCI-366-
456928 in_silico TnSsob2.4Streptococcus sobrinus TCI-377-
457930 in_silico TnSsporal2.1Streptococcus sp. oral taxon 071 str. 73H25AP-
458932 in_silico TnSspX2.1Streptococcus sp. 2 1 36FAA-
459933 in_silico ICE_SsuD12_TnGBS2Streptococcus suis D12-
460935 in_silico TnSzoo2.1Streptococcus equi subsp. zooepidemicus ATCC 35246-
461937 experimental CTnHybBacteroides fragilis BF-HMW615-
462938 in_silico CTnPi1Prevotella intermedia s OMA14
463939 in_silico CTnPi2Prevotella intermedia s OMA14
464940 in_silico CTnPi3Prevotella intermedia s OMA14
465941 in_silico CTnPi4Prevotella intermedia s 17
466942 experimental ICEAcAzorhizobium caulinodans ORS571-
467943 in_silico ICE5Bacteroides fragilis HMW615-
468944 in_silico ICE6440Pseudomonas aeruginosa HSV3483-
469945 in_silico ICE6441Pseudomonas aeruginosa FFUP PS CB5-
470946 in_silico ICEAcaSM.1Acidithiobacillus caldus s SM-1
471947 in_silico ICEAcaSM.2Acidithiobacillus caldus s SM-2
472948 in_silico ICEAcaSM.3Acidithiobacillus caldus s SM-3
473950 in_silico ICEAcaTY.2Acidithiobacillus caldus s ATCC 51756
474952 in_silico ICEAcaTY.1Acidithiobacillus caldus s ATCC 51756
475953 in_silico ICEAfe1Acidithiobacillus ferrooxidans ATCC 23270-
476954 in_silico ICEAfe2Acidithiobacillus ferrooxidans ATCC 23270-
477959 in_silico ICEAmeAeS1Alteromonas mediterranea MED64-
478964 in_silico ICEAx02736-1Achromobacter xylosoxidans X02736-
479966 experimental ICEEa1Elizabethkingia anophelis CSID_3015183678-
480967 in_silico ICEEbN1Azoarcus aromaticum EbN1-
481968 in_silico ICEEclATCC13047Enterobacter cloacae ATCC13047-
482969 in_silico ICEEcUMNK88Enterotoxigenic Escherichia coli (ETEC) UMNK88
483970 in_silico ICEEpiCFBP5888Erwinia piriflorinigrans CFBP5888-
484971 in_silico ICEHptfs3Helicobacter pylori PeCan18
485972 in_silico ICEhptfs4aHelicobacter pylori P12
486973 in_silico ICEhptfs4bHelicobacter pylori G27
487974 in_silico ICEhptfs4cHelicobacter pylori SouthAfrica7
488975 in_silico ICEKd33394Kingella denitrificans ATCC 33394-
489976 in_silico ICEKkKWG1Kingella kingae KWG1
490984 in_silico ICEMF63Azoarcus toluclasticus MF63-
491987 experimental ICEMh1Mannheimia haemolytica 42548-
492990 in_silico ICEMh535AMannheimia haemolytica 535A-
493991 in_silico ICEMhH23Mannheimia haemolytica serotype 6 H23-
494992 in_silico ICEMhL024AMannheimia haemolytica L024A-
495993 in_silico ICEMhL033AMannheimia haemolytica L033A-
496994 in_silico ICEMhL038AMannheimia haemolytica L038A-
497995 in_silico ICEMhL044AMannheimia haemolytica L044A-
498996 in_silico ICEMhT14Mannheimia haemolytica T14-
499997 in_silico ICEMladh(R88B)Mesorhizobium loti R88B-
500998 in_silico ICEMlSym(R7ANSxSU343)Mesorhizobium loti R7ANSxSU343-
5011002 in_silico ICEMlSym(MAFF)Mesorhizobium loti MAFF-
5021009 in_silico ICENmCC103Neisseria meningitidis MenC CC103 Nm56-
5031011 in_silico ICEPanAJ13355Pantoea ananatis AJ13355-
5041012 in_silico ICEPanB1-9Pantoea ananatis B1-9-
5051013 in_silico ICEPanBD442Pantoea ananatis BD442-
5061014 in_silico ICEPanLMG5342Pantoea ananatis LMG5342-
5071015 in_silico ICEPanPA13Pantoea ananatis PA13-
5081037 in_silico ICEStMS57Salmonella Typhimurium MS57-
5091038 experimental ICEth1Thermus thermophilus HB27-
5101039 in_silico ICETn43716061Pseudomonas aeruginosa PS106-RJ-
5111078 experimental ICE-βoxLegionella pneumophila subsp. pneumophila str. Philadelphia 1-
5121079 experimental LpcGI-2Legionella pneumophila Corby
5131080 experimental LpgGI-1Legionella pneumophila subsp. pneumophila str. Philadelphia 1-
5141081 in_silico Pac_ICE1_cnPseudomonas syringae pv. Actinidiae M7 or CH2010-6-
5151082 in_silico Pac_ICE1_nzPseudomonas syringae pv. Actinidiae ICMP18708-
5161083 in_silico Pac_ICE2_cnPseudomonas syringae pv. Actinidiae M228-
5171084 in_silico Pac_ICE2_itPseudomonas syringae pv. Actinidiae ICMP18744-
5181085 in_silico Pac_ICE3_clPseudomonas syringae pv. Actinidiae ICMP19455-
5191086 in_silico Pac_ICE4Pseudomonas syringae pv. Actinidiae PA459-
5201087 in_silico Pba1526_HAI2Pectobacterium atrosepticum ICMP 1526-
5211088 experimental PbN1_GI15Pectobacterium carotovorum subsp. brasiliensis ICMP 19477-
5221089 in_silico PccUGC_HAI2Pectobacterium carotovorum subsp. carotovorum UGC32-
5231090 in_silico RAGERickettsia felis-
5241091 experimental Trb-1Legionella pneumophila Corby
5251092 in_silico Xaj-ICEXanthomonas arboricola pv juglandis CFBP 7179-
5261094 in_silico Trb-2Legionella pneumophila Corby
5271095 in_silico ICEMaSym(WSM2073)-αMesorhizobium australicum WSM2073
5281096 experimental ICEMcSym(1271)-αMesorhizobium ciceri WSM1271
5291097 in_silico ICEMcSym(1284)-αMesorhizobium ciceri WSM1284
5301098 experimental ICEMlSym(NZP2037)-αMesorhizobium loti NZP2037
5311099 in_silico ICEMoSym(WSM2075)-αMesorhizobium opportunistum WSM2075
5321100 in_silico ICEMaSym(WSM2073)-βMesorhizobium australicum WSM2073
5331101 experimental ICEMcSym(1271)-βMesorhizobium ciceri WSM1271
5341102 in_silico ICEMcSym(1284)-βMesorhizobium ciceri WSM1284
5351103 experimental ICEMlSym(NZP2037)-βMesorhizobium loti NZP2037
5361104 in_silico ICEMoSym(WSM2075)-βMesorhizobium opportunistum WSM2075
5371105 in_silico ICEMaSym(WSM2073)-γMesorhizobium australicum WSM2073
5381106 experimental ICEMcSym(1271)-γMesorhizobium ciceri WSM1271
5391107 in_silico ICEMcSym(1284)-γMesorhizobium ciceri WSM1284
5401108 experimental ICEMlSym(NZP2037)-γMesorhizobium loti NZP2037
5411109 in_silico ICEMoSym(WSM2075)-γMesorhizobium opportunistum WSM2075
experimental Data derived from experimental literature
in_silico Putative ICEs predicted by bioinformatic methods
(1) Delahay RM et al. (2018). Phylogeographic diversity and mosaicism of the Helicobacter pylori tfs integrative and conjugative elements. Mob DNA. 9:05. [PudMed:29416569] in_silico
(2) Botelho J et al. (2018). Two decades of blaVIM-2-producing Pseudomonas aeruginosa dissemination: an interplay between mobile genetic elements and successful clones. J Antimicrob Chemother. 73(4):873-882. [PudMed:29373674] experimental in_silico
(3) Pham NP et al. (2017). Comparative genomic analysis of Brevibacterium strains: insights into key genetic determinants involved in adaptation to the cheese habitat. BMC Genomics. 18(1):955. [PudMed:29216827] experimental in_silico
(4) Husain F et al. (2017). Novel large-scale chromosomal transfer in Bacteroides fragilis contributes to its pan-genome and rapid environmental adaptation. Microb Genom. 3(11). [PudMed:29208130] experimental in_silico
(5) Castillo A et al. (2017). A DNA segment encoding the anticodon stem/loop of tRNA determines the specific recombination of integrative-conjugative elements in Acidithiobacillus species. RNA Biol. :1-8. [PudMed:29168417]
(6) Alamos P et al. (2017). Functionality of tRNAs encoded in a mobile genetic element from an acidophilic bacterium. RNA Biol. :1-10. [PudMed:28708455] in_silico
(7) Haskett TL et al. (2017). Evolutionary persistence of tripartite integrative and conjugative elements. Plasmid. 92:30-36. [PudMed:28669811]
(8) Perrin A et al. (2017). Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain. Nat Commun. 8:15483. [PudMed:28537263]
(9) Marin MA et al. (2017). The invasive Neisseria meningitidis MenC CC103 from Brazil is characterized by an accessory gene repertoire. Sci Rep. 7(1):1617. [PudMed:28487566]
(10) Dahmane N et al. (2017). Diversity of Integrative and Conjugative Elements of Streptococcus salivarius and Their Intra- and Interspecies Transfer. Appl Environ Microbiol. 83(13). [PudMed:28432093] experimental in_silico
(11) Blesa A et al. (2017). The transjugation machinery of Thermus thermophilus: Identification of TdtA, an ATPase involved in DNA donation. PLoS Genet. 13(3):e1006669. [PudMed:28282376] experimental
(12) Lopez-Perez M et al. (2017). Networking in microbes: conjugative elements and plasmids in the genus Alteromonas. BMC Genomics. 18(1):36. [PudMed:28056800] in_silico
(13) Zhang Y et al. (2017). Emergence of Novel Pathogenic Streptomyces Species by Site-Specific Accretion and cis-Mobilization of Pathogenicity Islands. Mol Plant Microbe Interact. 30(1):72-82. [PudMed:27977935] experimental in_silico
(14) Ling J et al. (2016). Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. Proc Natl Acad Sci U S A. 113(48):13875-13880. [PudMed:27849579] experimental in_silico
(15) Huang J et al. (2016). Evolution and Diversity of the Antimicrobial Resistance Associated Mobilome in Streptococcus suis: A Probable Mobile Genetic Elements Reservoir for Other Streptococci. Front Cell Infect Microbiol. 0.331944444. [PudMed:27774436]
(16) Haskett TL et al. (2016). Assembly and transfer of tripartite integrative and conjugative genetic elements. Proc Natl Acad Sci U S A. 113(43):12268-12273. [PudMed:27733511]
(17) Rahman M et al. (2016). Comparative Genome Analysis of the Daptomycin-Resistant Streptococcus anginosus Strain J4206 Associated with Breakthrough Bacteremia. Genome Biol Evol. 8(11):3446-3459. [PudMed:27678123] in_silico
(18) Morici E et al. (2017). A new mosaic integrative and conjugative element from Streptococcus agalactiae carrying resistance genes for chloramphenicol (catQ) and macrolides [mef(I) and erm(TR)]. J Antimicrob Chemother. 72(1):64-67. [PudMed:27621174] experimental
(19) Campisi E et al. (2016). Genomic Analysis Reveals Multi-Drug Resistance Clusters in Group B Streptococcus CC17 Hypervirulent Isolates Causing Neonatal Invasive Disease in Southern Mainland China. Front Microbiol. 1.170138889. [PudMed:27574519] in_silico
(20) Knight DR et al. (2016). A Phenotypically Silent vanB2 Operon Carried on a Tn1549-Like Element in Clostridium difficile. mSphere. 1(4). [PudMed:27536735]
(21) Uchiyama I et al. (2016). A Novel Approach to Helicobacter pylori Pan-Genome Analysis for Identification of Genomic Islands. PLoS One. 11(8):e0159419. [PudMed:27504980] in_silico
(22) Huang K et al. (2016). Characterization of Spectinomycin Resistance in Streptococcus suis Leads to Two Novel Insights into Drug Resistance Formation and Dissemination Mechanism. Antimicrob Agents Chemother. 60(10):6390-2. [PudMed:27458226]
(23) Thibessard A et al. (2016). Complete Genome Sequence of Streptomyces ambofaciens DSM 40697, a Paradigm for Genome Plasticity Studies. Genome Announc. 4(3). [PudMed:27257195]
(24) Andrey DO et al. (2016). Re-emergence of scarlet fever: old players return?. Expert Rev Anti Infect Ther. 14(8):687-9. [PudMed:27249582]
(25) Fonseca EL et al. (2016). Commentary: Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Front Microbiol. 0.826388889. [PudMed:27242778]
(26) Panda P et al. (2016). Pectobacterium atrosepticum and Pectobacterium carotovorum Harbor Distinct, Independently Acquired Integrative and Conjugative Elements Encoding Coronafacic Acid that Enhance Virulence on Potato Stems. Front Microbiol. 0.567361111. [PudMed:27065965]
(27) Athey TB et al. (2016). Population Structure and Antimicrobial Resistance Profiles of Streptococcus suis Serotype 2 Sequence Type 25 Strains. PLoS One. 11(3):e0150908. [PudMed:26954687] in_silico
(28) Klima CL et al. (2016). Comparative Genomic Analysis of Mannheimia haemolytica from Bovine Sources. PLoS One. 11(2):e0149520. [PudMed:26926339]
(29) Ambroset C et al. (2015). New Insights into the Classification and Integration Specificity of Streptococcus Integrative Conjugative Elements through Extensive Genome Exploration. Front Microbiol. 1.279861111. [PudMed:26779141] in_silico
(30) Cesbron S et al. (2015). Comparative Genomics of Pathogenic and Nonpathogenic Strains of Xanthomonas arboricola Unveil Molecular and Evolutionary Events Linked to Pathoadaptation. Front Plant Sci. 1.031944444. [PudMed:26734033] experimental in_silico
(31) Mingoia M et al. (2016). Macrolide resistance gene erm(TR) and erm(TR)-carrying genetic elements in Streptococcus agalactiae: characterization of ICESagTR7, a new composite element containing IMESp2907. J Antimicrob Chemother. 71(3):593-600. [PudMed:26679245] experimental
(32) Naito M et al. (2016). The complete genome sequencing of Prevotella intermedia strain OMA14 and a subsequent fine-scale, intra-species genomic comparison reveal an unusual amplification of conjugative and mobile transposons and identify a novel Prevotella-lineage-specific repeat. DNA Res. 23(1):11-9. [PudMed:26645327] experimental in_silico
(33) Mohammed M et al. (2015). Whole genome sequencing provides possible explanations for the difference in phage susceptibility among two Salmonella Typhimurium phage types (DT8 and DT30) associated with a single foodborne outbreak. BMC Res Notes. 0.838888889. [PudMed:26613761] in_silico
(34) Abbott ZD et al. (2016). csrT Represents a New Class of csrA-Like Regulatory Genes Associated with Integrative Conjugative Elements of Legionella pneumophila. J Bacteriol. 198(3):553-64. [PudMed:26598366] experimental
(35) Bidet P et al. (2016). Genome Analysis of Kingella kingae Strain KWG1 Reveals How a beta-Lactamase Gene Inserted in the Chromosome of This Species. Antimicrob Agents Chemother. 60(1):703-8. [PudMed:26574009] in_silico
(36) Kojima KK et al. (2015). Transmission of the PabI family of restriction DNA glycosylase genes: mobility and long-term inheritance. BMC Genomics. 1.234027778. [PudMed:26481899] in_silico
(37) Douarre PE et al. (2015). Host specificity in the diversity and transfer of lsa resistance genes in group B Streptococcus. J Antimicrob Chemother. 70(12):3205-13. [PudMed:26410170] experimental in_silico
(38) Morales M et al. (2015). Insights into the Evolutionary Relationships of LytA Autolysin and Ply Pneumolysin-Like Genes in Streptococcus pneumoniae and Related Streptococci. Genome Biol Evol. 7(9):2747-61. [PudMed:26349755] in_silico
(39) Chen J et al. (2015). Characterization of the chromosomal integration of Saccharopolyspora plasmid pCM32 and its application to improve production of spinosyn in Saccharopolyspora spinosa. Appl Microbiol Biotechnol. 99(23):10141-9. [PudMed:26260388] experimental in_silico
(40) Martin-Moldes Z et al. (2015). Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features. Syst Appl Microbiol. 38(7):462-71. [PudMed:26259823] experimental in_silico
(41) de Andrade Barboza S et al. (2015). Complete Genome Sequence of Noninvasive Streptococcus pyogenes M/emm28 Strain STAB10015, Isolated from a Child with Perianal Dermatitis in French Brittany. Genome Announc. 3(4). [PudMed:26184948] in_silico
(42) Chapleau M et al. (2016). Identification of genetic and environmental factors stimulating excision from Streptomyces scabiei chromosome of the toxicogenic region responsible for pathogenicity. Mol Plant Pathol. 17(4):501-9. [PudMed:26177341] experimental in_silico
(43) De Maayer P et al. (2015). Integrative conjugative elements of the ICEPan family play a potential role in Pantoea ananatis ecological diversification and antibiosis. Front Microbiol. 0.65. [PudMed:26106378] experimental in_silico
(44) Fonseca EL et al. (2015). Full characterization of the integrative and conjugative element carrying the metallo-beta-lactamase bla SPM-1 and bicyclomycin bcr1 resistance genes found in the pandemic Pseudomonas aeruginosa clone SP/ST277. J Antimicrob Chemother. 70(9):2547-50. [PudMed:26093374] in_silico
(45) Carraro N et al. (2015). Replication and Active Partition of Integrative and Conjugative Elements (ICEs) of the SXT/R391 Family: The Line between ICEs and Conjugative Plasmids Is Getting Thinner. PLoS Genet. 11(6):e1005298. [PudMed:26061412] experimental in_silico
(46) Marini E et al. (2015). Recombination between Streptococcus suis ICESsu32457 and Streptococcus agalactiae ICESa2603 yields a hybrid ICE transferable to Streptococcus pyogenes. Vet Microbiol. 178(1-2):99-104. [PudMed:25935120] experimental
(47) Puymege A et al. (2015). Analysis of Streptococcus agalactiae pan-genome for prevalence, diversity and functionality of integrative and conjugative or mobilizable elements integrated in the tRNA(Lys CTT) gene. Mol Genet Genomics. 290(5):1727-40. [PudMed:25832353] experimental in_silico
(48) Reeve W et al. (2014). Genome sequence of the Lotus corniculatus microsymbiont Mesorhizobium loti strain R88B. Stand Genomic Sci. 9:03. [PudMed:25780496]
(49) Hu Y et al. (2015). Genomic insights into intrinsic and acquired drug resistance mechanisms in Achromobacter xylosoxidans. Antimicrob Agents Chemother. 59(2):1152-61. [PudMed:25487802] experimental in_silico
(50) Hilty M et al. (2014). Global phylogenomic analysis of nonencapsulated Streptococcus pneumoniae reveals a deep-branching classic lineage that is distinct from multiple sporadic lineages. Genome Biol Evol. 6(12):3281-94. [PudMed:25480686] in_silico
(51) Gillespie JJ et al. (2014). Genomic diversification in strains of Rickettsia felis Isolated from different arthropods. Genome Biol Evol. 7(1):35-56. [PudMed:25477419]
(52) Davies MR et al. (2015). Emergence of scarlet fever Streptococcus pyogenes emm12 clones in Hong Kong is associated with toxin acquisition and multidrug resistance. Nat Genet. 47(1):84-7. [PudMed:25401300] experimental in_silico
(53) Bustamante P et al. (2014). Toxin-antitoxin systems in the mobile genome of Acidithiobacillus ferrooxidans. PLoS One. 9(11):e112226. [PudMed:25384039] experimental in_silico
(54) Santoro F et al. (2014). Variation on a theme; an overview of the Tn916/Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci. Front Microbiol. 0.579861111. [PudMed:25368607]
(55) Eidam C et al. (2015). Analysis and comparative genomics of ICEMh1, a novel integrative and conjugative element (ICE) of Mannheimia haemolytica. J Antimicrob Chemother. 70(1):93-7. [PudMed:25239467]
(56) Raftis EJ et al. (2014). Unusual genome complexity in Lactobacillus salivarius JCM1046. BMC Genomics. 1.160416667. [PudMed:25201645] in_silico
(57) Husain F et al. (2014). The Ellis Island Effect: A novel mobile element in a multi-drug resistant Bacteroides fragilis clinical isolate includes a mosaic of resistance genes from Gram-positive bacteria. Mob Genet Elements. 4:e29801. [PudMed:25165618] experimental in_silico
(58) Wasels F et al. (2014). Inter- and intraspecies transfer of a Clostridium difficile conjugative transposon conferring resistance to MLSB. Microb Drug Resist. 20(6):555-60. [PudMed:25055190]
(59) Reeve W et al. (2013). Complete genome sequence of Mesorhizobium australicum type strain (WSM2073(T)). Stand Genomic Sci. 9(2):410-9. [PudMed:24976896]
(60) Reeve W et al. (2013). Complete genome sequence of Mesorhizobium opportunistum type strain WSM2075(T.). Stand Genomic Sci. 9(2):294-303. [PudMed:24976886] experimental in_silico
(61) Montilla A et al. (2014). Genetic environment of the lnu(B) gene in a Streptococcus agalactiae clinical isolate. Antimicrob Agents Chemother. 58(9):5636-7. [PudMed:24957835] in_silico
(62) Huguet-Tapia JC et al. (2014). Characterization of the integration and modular excision of the integrative conjugative element PAISt in Streptomyces turgidiscabies Car8. PLoS One. 9(6):e99345. [PudMed:24927117] experimental in_silico
(63) Flynn KJ et al. (2014). Integrative conjugative element ICE-betaox confers oxidative stress resistance to Legionella pneumophila in vitro and in macrophages. MBio. 5(3):e01091-14. [PudMed:24781744] experimental
(64) Clewell DB et al. (2014). A comprehensive analysis of Helicobacter pylori plasticity zones reveals that they are integrating conjugative elements with intermediate integration specificity. BMC Genomics. 0.840277778. [PudMed:24767410] in_silico
(65) Klima CL et al. (2014). Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements. J Clin Microbiol. 52(2):438-48. [PudMed:24478472]
(66) Brenciani A et al. (2014). ICESp1116, the genetic element responsible for erm(B)-mediated, inducible erythromycin resistance in Streptococcus pyogenes, belongs to the TnGBS family of integrative and conjugative elements. Antimicrob Agents Chemother. 58(4):2479-81. [PudMed:24449773]
(67) Guerillot R et al. (2014). The diversity of prokaryotic DDE transposases of the mutator superfamily, insertion specificity, and association with conjugation machineries. Genome Biol Evol. 6(2):260-72. [PudMed:24418649] in_silico
(68) Wee BA et al. (2013). A distinct and divergent lineage of genomic island-associated Type IV Secretion Systems in Legionella. PLoS One. 8(12):e82221. [PudMed:24358157] in_silico
(69) Olson AB et al. (2013). Phylogenetic relationship and virulence inference of Streptococcus Anginosus Group: curated annotation and whole-genome comparative analysis support distinct species designation. BMC Genomics. 1.204861111. [PudMed:24341328] in_silico
(70) Acuna LG et al. (2013). Architecture and gene repertoire of the flexible genome of the extreme acidophile Acidithiobacillus caldus. PLoS One. 8(11):e78237. [PudMed:24250794] experimental in_silico
(71) Bjorkeng EK et al. (2013). ICESluvan, a 94-kilobase mosaic integrative conjugative element conferring interspecies transfer of VanB-type glycopeptide resistance, a novel bacitracin resistance locus, and a toxin-antitoxin stabilization system. J Bacteriol. 195(23):5381-90. [PudMed:24078615]
(72) Wyres KL et al. (2013). Evidence of antimicrobial resistance-conferring genetic elements among pneumococci isolated prior to 1974. BMC Genomics. 0.930555556. [PudMed:23879707] in_silico
(73) Tirumalai MR et al. (2013). An ICEBs1-like element may be associated with the extreme radiation and desiccation resistance of Bacillus pumilus SAFR-032 spores. Extremophiles. 17(5):767-74. [PudMed:23812891] in_silico
(74) Wasels F et al. (2013). Clostridium difficile erm(B)-containing elements and the burden on the in vitro fitness. J Med Microbiol. 62(Pt 9):1461-7. [PudMed:23741023]
(75) Rao C et al. (2013). Phylogenetic reconstruction of the Legionella pneumophila Philadelphia-1 laboratory strains through comparative genomics. PLoS One. 8(5):e64129. [PudMed:23717549] in_silico
(76) Butler MI et al. (2013). Pseudomonas syringae pv. actinidiae from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China. PLoS One. 8(2):e57464. [PudMed:23555547] experimental in_silico
(77) Bustamante P et al. (2012). ICE Afe 1, an actively excising genetic element from the biomining bacterium Acidithiobacillus ferrooxidans. J Mol Microbiol Biotechnol. 22(6):399-407. [PudMed:23486178] experimental
(78) Guerillot R et al. (2013). Modular evolution of TnGBSs, a new family of integrative and conjugative elements associating insertion sequence transposition, plasmid replication, and conjugation for their spreading. J Bacteriol. 195(9):1979-90. [PudMed:23435978] experimental in_silico
(79) Lautner M et al. (2013). Regulation, integrase-dependent excision, and horizontal transfer of genomic islands in Legionella pneumophila. J Bacteriol. 195(7):1583-97. [PudMed:23354744] experimental in_silico
(80) Puymege A et al. (2013). Conjugative transfer and cis-mobilization of a genomic island by an integrative and conjugative element of Streptococcus agalactiae. J Bacteriol. 195(6):1142-51. [PudMed:23275243]
(81) Chuzeville S et al. (2012). Characterization of a New CAMP Factor Carried by an Integrative and Conjugative Element in Streptococcus agalactiae and Spreading in Streptococci. PLoS One. 7(11):e48918. [PudMed:23152820] experimental
(82) Ramsay JP et al. (2012). A widely conserved molecular switch controls quorum sensing and symbiosis island transfer in Mesorhizobium loti through expression of a novel antiactivator. Mol Microbiol. . [PudMed:23106190] experimental
(83) Boyd DA et al. (2012). The VanE operon in Enterococcus faecalis N00-410 is found on a putative integrative and conjugative element, Tn6202. J Antimicrob Chemother. . [PudMed:23034711]
(84) Tse H et al. (2012). Molecular characterization of the 2011 Hong Kong scarlet fever outbreak. J Infect Dis. 206(3):341-51. [PudMed:22615319]
(85) Palmieri C et al. (2011). Streptococcus suis, an Emerging Drug-Resistant Animal and Human Pathogen. Front Microbiol. 0.246527778. [PudMed:22275909]
(86) Ghinet MG et al. (2011). Uncovering the prevalence and diversity of integrating conjugative elements in actinobacteria. PLoS One. 6(11):e27846. [PudMed:22114709] in_silico
(87) Shepard SM et al. (2012). Genome sequences and phylogenetic analysis of K88- and F18-positive porcine enterotoxigenic Escherichia coli. J Bacteriol. 194(2):395-405. [PudMed:22081385] in_silico
(88) Giovanetti E et al. (2012). ICESp2905, the erm(TR)-tet(O) element of Streptococcus pyogenes, is formed by two independent integrative and conjugative elements. Antimicrob Agents Chemother. 56(1):591-4. [PudMed:21986826] experimental
(89) Godfrey SA, Lovell HC, Mansfield JW, Corry DS, Jackson RW, Arnold DL (2011). The stealth episome: suppression of gene expression on the excised genomic island PPHGI-1 from Pseudomonas syringae pv. phaseolicola. PLoS Pathog. 7(3):e1002010. [PudMed:21483484] experimental
(90) Liu G et al. (2010). Cleavage of phosphorothioated DNA and methylated DNA by the type IV restriction endonuclease ScoMcrA. PLoS Genet. 6(12):e1001253. [PudMed:21203499] experimental
(91) Zhang J et al. (2011). Expansion of the known Klebsiella pneumoniae species gene pool by characterization of novel alien DNA islands integrated into tmRNA gene sites. J Microbiol Methods. 84(2):283-9. [PudMed:21182879] experimental
(92) Machielsen R et al. (2011). Molecular description and industrial potential of Tn6098 conjugative transfer conferring alpha-galactoside metabolism in Lactococcus lactis. Appl Environ Microbiol. 77(2):555-63. [PudMed:21115709] experimental
(93) Roche D et al. (2010). ICEEc2, a new integrative and conjugative element belonging to the pKLC102/PAGI-2 family, identified in Escherichia coli strain BEN374. J Bacteriol. 192(19):5026-36. [PudMed:20675467] experimental
(94) Brouwer MS et al. (2010). Characterization of the conjugative transposon Tn6000 from Enterococcus casseliflavus 664.1H1 (formerly Enterococcus faecium 664.1H1). FEMS Microbiol Lett. 309(1):71-6. [PudMed:20528943] experimental
(95) Fischer W et al. (2010). Strain-specific genes of Helicobacter pylori: genome evolution driven by a novel type IV secretion system and genomic island transfer. Nucleic Acids Res. 38(18):6089-101. [PudMed:20478826]
(96) Rusniok C et al. (2010). Genome sequence of Streptococcus gallolyticus: insights into its adaptation to the bovine rumen and its ability to cause endocarditis. J Bacteriol. 192(8):2266-76. [PudMed:20139183]
(97) Nouvel LX et al. (2010). Comparative genomic and proteomic analyses of two Mycoplasma agalactiae strains: clues to the macro- and micro-events that are shaping mycoplasma diversity. BMC Genomics. 0.518055556. [PudMed:20122262]
(98) Bordeleau E et al. (2010). Beyond antibiotic resistance: integrating conjugative elements of the SXT/R391 family that encode novel diguanylate cyclases participate to c-di-GMP signalling in Vibrio cholerae. Environ Microbiol. 12(2):510-23. [PudMed:19888998] experimental
(99) Putze J et al. (2009). Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun. 77(11):4696-703. [PudMed:19720753] experimental in_silico
(100) Flannery EL et al. (2009). Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with a diverse group of mobile elements. Infect Immun. 77(11):4887-94. [PudMed:19687197] experimental
(101) Holden MT et al. (2009). Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens. PLoS Pathog. 5(3):e1000346. [PudMed:19325880]
(102) Brochet M et al. (2009). Atypical association of DDE transposition with conjugation specifies a new family of mobile elements. Mol Microbiol. 71(4):948-59. [PudMed:19183283] experimental
(103) Mavrodi DV et al. (2009). Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiol. 9:08. [PudMed:19144133]
(104) Heather Z et al. (2008). A novel streptococcal integrative conjugative element involved in iron acquisition. Mol Microbiol. 70(5):1274-92. [PudMed:18990191] experimental
(105) Feizabadi MM et al. (2008). Transposon Tn5281 is the main distributor of the aminoglycoside modifying enzyme gene among isolates of Enterococcus faecalis in Tehran hospitals. Can J Microbiol. 54(10):887-90. [PudMed:18923558] experimental
(106) Brochet M et al. (2008). Integrative conjugative elements and related elements are major contributors to the genome diversity of Streptococcus agalactiae. J Bacteriol. 190(20):6913-7. [PudMed:18708498] experimental in_silico
(107) Bourgogne A et al. (2008). Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol. 9(7):R110. [PudMed:18611278]
(108) Naito M et al. (2008). Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA Res. 15(4):215-25. [PudMed:18524787]
(109) te Poele EM et al. (2008). Actinomycete integrative and conjugative elements. Antonie Van Leeuwenhoek. 94(1):127-43. [PudMed:18523858]
(110) te Poele EM et al. (2008). Actinomycete integrative and conjugative pMEA-like elements of Amycolatopsis and Saccharopolyspora decoded. Plasmid. 59(3):202-16. [PudMed:18295883] in_silico
(111) Glockner G et al. (2008). Identification and characterization of a new conjugation/type IVA secretion system (trb/tra) of Legionella pneumophila Corby localized on two mobile genomic islands. Int J Med Microbiol. 298(5-6):411-28. [PudMed:17888731] experimental in_silico
(112) Beres SB et al. (2007). Contribution of exogenous genetic elements to the group A Streptococcus metagenome. PLoS One. 2(8):e800. [PudMed:17726530]
(113) Hecht DW et al. (2007). Characterization of BctA, a mating apparatus protein required for transfer of the Bacteroides fragilis conjugal element BTF-37. Res Microbiol. 158(7):600-7. [PudMed:17720457] experimental
(114) Song B et al. (2007). Integration site selection by the Bacteroides conjugative transposon CTnBST. J Bacteriol. 189(18):6594-601. [PudMed:17616597] experimental
(115) te Poele EM et al. (2007). Prevalence and distribution of nucleotide sequences typical for pMEA-like accessory genetic elements in the genus Amycolatopsis. FEMS Microbiol Ecol. 61(2):285-94. [PudMed:17535299] experimental
(116) Schlesinger DJ et al. (2007). Possible origins of CTnBST, a conjugative transposon found recently in a human colonic Bacteroides strain. Appl Environ Microbiol. 73(13):4226-33. [PudMed:17483268] experimental
(117) Oliynyk M et al. (2007). Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol. 25(4):447-53. [PudMed:17369815]
(118) Rice LB et al. (2007). Interaction of related Tn916-like transposons: analysis of excision events promoted by Tn916 and Tn5386 integrases. J Bacteriol. 189(10):3909-17. [PudMed:17322310] experimental
(119) Belhocine K et al. (2007). Conjugative transfer of the Lactococcus lactis sex factor and pRS01 plasmid to Enterococcus faecalis. FEMS Microbiol Lett. 269(2):289-94. [PudMed:17263841] experimental
(120) Brenciani A et al. (2007). Genetic elements carrying erm(B) in Streptococcus pyogenes and association with tet(M) tetracycline resistance gene. Antimicrob Agents Chemother. 51(4):1209-16. [PudMed:17261630] experimental
(121) Wesslund NA et al. (2007). Integration and excision of a newly discovered bacteroides conjugative transposon, CTnBST. J Bacteriol. 189(3):1072-82. [PudMed:17122349] experimental
(122) Nougayrede JP et al. (2006). Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science. 313(5788):848-51. [PudMed:16902142] experimental
(123) Roberts AP et al. (2006). Characterization of the ends and target site of a novel tetracycline resistance-encoding conjugative transposon from Enterococcus faecium 664.1H1. J Bacteriol. 188(12):4356-61. [PudMed:16740942] experimental
(124) Pitman AR, Jackson RW, Mansfield JW, Kaitell V, Thwaites R, Arnold DL (2005). Exposure to host resistance mechanisms drives evolution of bacterial virulence in plants. Curr Biol. 15(24):2230-5. [PudMed:16360685] experimental
(125) Rice LB et al. (2005). Tn5386, a novel Tn916-like mobile element in Enterococcus faecium D344R that interacts with Tn916 to yield a large genomic deletion. J Bacteriol. 187(19):6668-77. [PudMed:16166528] experimental
(126) Hosted TJ Jr et al. (2005). Characterization of the Micromonospora rosaria pMR2 plasmid and development of a high G+C codon optimized integrase for site-specific integration. Plasmid. 54(3):249-58. [PudMed:16024079] experimental
(127) Takeuchi K et al. (2005). Drug resistance of Enterococcus faecium clinical isolates and the conjugative transfer of gentamicin and erythromycin resistance traits. FEMS Microbiol Lett. 243(2):347-54. [PudMed:15686834]
(128) Franco AA (2004). The Bacteroides fragilis pathogenicity island is contained in a putative novel conjugative transposon. J Bacteriol. 186(18):6077-92. [PudMed:15342577] experimental
(129) Melville CM et al. (2004). The Butyrivibrio fibrisolvens tet(W) gene is carried on the novel conjugative transposon TnB1230, which contains duplicated nitroreductase coding sequences. J Bacteriol. 186(11):3656-9. [PudMed:15150255] experimental
(130) Gupta A et al. (2003). A new Bacteroides conjugative transposon that carries an ermB gene. Appl Environ Microbiol. 69(11):6455-63. [PudMed:14602600] experimental
(131) Wang Y et al. (2003). A newly discovered Bacteroides conjugative transposon, CTnGERM1, contains genes also found in gram-positive bacteria. Appl Environ Microbiol. 69(8):4595-603. [PudMed:12902247] experimental
(132) Dahl KH et al. (2003). Transferable vanB2 Tn5382-containing elements in fecal streptococcal strains from veal calves. Antimicrob Agents Chemother. 47(8):2579-83. [PudMed:12878522] experimental
(133) Brassinga AK et al. (2003). A 65-kilobase pathogenicity island is unique to Philadelphia-1 strains of Legionella pneumophila. J Bacteriol. 185(15):4630-7. [PudMed:12867476] experimental
(134) Paulsen IT et al. (2003). Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science. 299(5615):2071-4. [PudMed:12663927]
(135) Possoz C et al. (2003). Conjugal immunity of Streptomyces strains carrying the integrative element pSAM2 is due to the pif gene (pSAM2 immunity factor). Mol Microbiol. 47(5):1385-93. [PudMed:12603742] experimental
(136) Ajdic D et al. (2002). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A. 99(22):14434-9. [PudMed:12397186]
(137) Burrus V et al. (2002). The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. Plasmid. 48(2):77-97. [PudMed:12383726] experimental in_silico
(138) Glaser P et al. (2002). Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol. 45(6):1499-513. [PudMed:12354221]
(139) Dimopoulou ID et al. (2002). Site-specific recombination with the chromosomal tRNA(Leu) gene by the large conjugative Haemophilus resistance plasmid. Antimicrob Agents Chemother. 46(5):1602-3. [PudMed:11959612] experimental
(140) Vedantam G et al. (2002). Isolation and characterization of BTF-37: chromosomal DNA captured from Bacteroides fragilis that confers self-transferability and expresses a pilus-like structure in Bacteroides spp. and Escherichia coli. J Bacteriol. 184(3):728-38. [PudMed:11790742] experimental
(141) Nishi A et al. (2000). A 90-kilobase conjugative chromosomal element coding for biphenyl and salicylate catabolism in Pseudomonas putida KF715. J Bacteriol. 182(7):1949-55. [PudMed:10715002] experimental
(142) Chung WO et al. (1999). Mobile elements carrying ermF and tetQ genes in gram-positive and gram-negative bacteria. J Antimicrob Chemother. 44(3):329-35. [PudMed:10511399] experimental
(143) Sezonov G et al. (1998). Replicase, excisionase, and integrase genes of the Streptomyces element pSAM2 constitute an operon positively regulated by the pra gene. J Bacteriol. 180(12):3056-61. [PudMed:9620953] experimental
(144) Rice LB et al. (1998). Transfer of Tn5385, a composite, multiresistance chromosomal element from Enterococcus faecalis. J Bacteriol. 180(3):714-21. [PudMed:9457879] experimental
(145) Seoane A et al. (1997). Targets for pSAM2 integrase-mediated site-specific integration in the Mycobacterium smegmatis chromosome. Microbiology. 143 ( Pt 10):3375-80. [PudMed:9353939] experimental
(146) Hochhut B et al. (1997). CTnscr94, a conjugative transposon found in enterobacteria. J Bacteriol. 179(7):2097-102. [PudMed:9079891] experimental
(147) Cooper AJ et al. (1996). The erythromycin resistance gene from the Bacteroides conjugal transposon Tcr Emr 7853 is nearly identical to ermG from Bacillus sphaericus. Antimicrob Agents Chemother. 40(2):506-8. [PudMed:8834912] experimental
(148) Mills DA et al. (1996). Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci. J Bacteriol. 178(12):3531-8. [PudMed:8655550] experimental
(149) Vrijbloed JW et al. (1995). Identification of the minimal replicon of plasmid pMEA300 of the methylotrophic actinomycete Amycolatopsis methanolica. Mol Microbiol. 18(1):21-31. [PudMed:8596458] experimental
(150) De Vos WM et al. (1995). Genetics of the nisin operon and the sucrose-nisin conjugative transposon Tn5276. Dev Biol Stand. 85:617-25. [PudMed:8586240] experimental
(151) Broadbent JR et al. (1995). Characteristics of Tn5307 exchange and intergeneric transfer of genes associated with nisin production. Appl Microbiol Biotechnol. 44(1-2):139-46. [PudMed:8579827] experimental
(152) Vrijbloed JW et al. (1995). Transformation of the methylotrophic actinomycete Amycolatopis methanolica with plasmid DNA: stimulatory effect of a pMEA300-encoded gene. Plasmid. 34(2):96-104. [PudMed:8559807] experimental
(153) Sezonov G et al. (1995). Characterization of pra, a gene for replication control in pSAM2, the integrating element of Streptomyces ambofaciens. Mol Microbiol. 17(3):533-44. [PudMed:8559072] experimental
(154) Brasch MA et al. (1993). Localization and nucleotide sequences of genes mediating site-specific recombination of the SLP1 element in Streptomyces lividans. J Bacteriol. 175(10):3067-74. [PudMed:8387993] experimental
(155) Hagege J et al. (1993). Transfer functions of the conjugative integrating element pSAM2 from Streptomyces ambofaciens: characterization of a kil-kor system associated with transfer. J Bacteriol. 175(17):5529-38. [PudMed:8366038] experimental
(156) Rauch PJ et al. (1994). Identification and characterization of genes involved in excision of the Lactococcus lactis conjugative transposon Tn5276. J Bacteriol. 176(8):2165-71. [PudMed:8157585] experimental
(157) Hagege J et al. (1994). Identification of a gene encoding the replication initiator protein of the Streptomyces integrating element, pSAM2. Plasmid. 31(2):166-83. [PudMed:8029324] experimental
(158) Vrijbloed JW et al. (1994). A plasmid from the methylotrophic actinomycete Amycolatopsis methanolica capable of site-specific integration. J Bacteriol. 176(22):7087-90. [PudMed:7961475] experimental
(159) Nikolich MP et al. (1994). Characterization of a new type of Bacteroides conjugative transposon, Tcr Emr 7853. J Bacteriol. 176(21):6606-12. [PudMed:7961412] experimental
(160) Hagege J et al. (1993). Mode and origin of replication of pSAM2, a conjugative integrating element of Streptomyces ambofaciens. Mol Microbiol. 10(4):799-812. [PudMed:7934842] experimental
(161) Mills DA et al. (1994). Genetic analysis of regions of the Lactococcus lactis subsp. lactis plasmid pRS01 involved in conjugative transfer. Appl Environ Microbiol. 60(12):4413-20. [PudMed:7811081] experimental
(162) Bibb MJ et al. (1981). Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans. Mol Gen Genet. 184(2):230-40. [PudMed:6948998] experimental
(163) Pernodet JL et al. (1984). Plasmids in different strains of Streptomyces ambofaciens: free and integrated form of plasmid pSAM2. Mol Gen Genet. 198(1):35-41. [PudMed:6596483] experimental
(164) Hopwood DA et al. (1984). Integrated DNA sequences in three streptomycetes form related autonomous plasmids after transfer to Streptomyces lividans. Plasmid. 11(1):1-16. [PudMed:6369354] experimental
(165) Omer CA et al. (1984). Plasmid formation in Streptomyces: excision and integration of the SLP1 replicon at a specific chromosomal site. Mol Gen Genet. 196(3):429-38. [PudMed:6094971] experimental
(166) Miyoshi YK et al. (1986). Multicopy derivative of pock-forming plasmid pSA1 in Streptomyces azureus. J Bacteriol. 168(1):452-4. [PudMed:3759910] experimental
(167) Lee SC et al. (1988). Analysis of recombination occurring at SLP1 att sites. J Bacteriol. 170(12):5806-13. [PudMed:3056916] experimental
(168) Moretti P et al. (1985). Isolation and characterization of an extrachromosomal element from Nocardia mediterranei. Plasmid. 14(2):126-33. [PudMed:2999850] experimental
(169) Cohen A et al. (1985). The integrated and free states of Streptomyces griseus plasmid pSG1. Plasmid. 13(1):41-50. [PudMed:2986187] experimental
(170) Madon J et al. (1987). Site-specific integration and excision of pMEA100 in Nocardia mediterranei. Mol Gen Genet. 209(2):257-64. [PudMed:2823074] experimental
(171) Sosio M et al. (1989). Excision of pIJ408 from the chromosome of Streptomyces glaucescens and its transfer into Streptomyces lividans. Mol Gen Genet. 218(1):169-76. [PudMed:2779515] experimental
(172) Boccard F et al. (1989). The integrated conjugative plasmid pSAM2 of Streptomyces ambofaciens is related to temperate bacteriophages. EMBO J. 8(3):973-80. [PudMed:2721504] experimental
(173) Boccard F et al. (1989). Structural analysis of loci involved in pSAM2 site-specific integration in Streptomyces. Plasmid. 21(1):59-70. [PudMed:2657820] experimental
(174) Kuhstoss S et al. (1989). Site-specific integration in Streptomyces ambofaciens: localization of integration functions in S. ambofaciens plasmid pSAM2. J Bacteriol. 171(1):16-23. [PudMed:2536654] experimental
(175) Brown DP et al. (1990). Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea. J Bacteriol. 172(4):1877-88. [PudMed:2180909] experimental
(176) Halula M et al. (1990). Tn5030: a conjugative transposon conferring clindamycin resistance in Bacteroides species. Rev Infect Dis. 12 Suppl 2:S235-42. [PudMed:2154843] experimental
(177) Katz L et al. (1991). Site-specific recombination in Escherichia coli between the att sites of plasmid pSE211 from Saccharopolyspora erythraea. Mol Gen Genet. 227(1):155-9. [PudMed:2046656] experimental
(178) Horn N et al. (1991). Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol Gen Genet. 228(1-2):129-35. [PudMed:1679523] experimental
(179) Vogtli M et al. (1992). The chromosomal integration site for the Streptomyces plasmid SLP1 is a functional tRNA(Tyr) gene essential for cell viability. Mol Microbiol. 6(20):3041-50. [PudMed:1479893] experimental
(180) Bar-Nir D et al. (1992). tDNA(ser) sequences are involved in the excision of Streptomyces griseus plasmid pSG1. Gene. 122(1):71-6. [PudMed:1452039] experimental
(181) Rauch PJ et al. (1992). Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J Bacteriol. 174(4):1280-7. [PudMed:1310502] experimental
 
experimental experimental literature
in_silico in silico analysis literature