SecReT4
T4SS ID5
StrainLegionella pneumophila subsp. pneumophila str. Philadelphia 1
Repliconchromosome [Browse all T4SS(s) in this replicon]
AccessionNC_002942
Location479014..515432; 566512..567138; 3021320..3039999
NameDot/Icm
Functioneffector translocation
ClassificationType IVB; Type I
experimental Experimental investigation has been performed on this T4SS.
structure Information of structure: structureRalF, SidD, SidJ-CaM, SidF, LegAS4, RavZ, DotL(656-783)-IcmS-IcmW, Outer membrane complex, WipB, DotD, IcmS-IcmW-DotL complex, DotM, SidJ-CaM-AMP ternary complex, SdeA, DotF fused to a superfolder GFP, LpiR1, VipD, AnkX, Lem14, LidA (60-594), LidA in complex with active Rab8a, DotL(656-783)-IcmS-IcmW-LvgA, Lgt1, DotN, PI(4)P-Specific Membrane Recruitment of DrrA/SidM, DrrA/SidM, Se-labelled SidJ complex with CaM, IcmR and IcmQ, RidL, LppA, Inner membrane part, LegC3, SidJ-Human calmodulin complex, Rab1b in complex with the GEF domain of DrrA/SidM, Lpg0393, Inner membrane complex, DotL(590-659)-DotN, DotI, SidC

T4SS components
ComponentDotADotBDotCDotDIcmBIcmCIcmDIcmEIcmF
Number111112111
ComponentIcmGIcmHIcmJIcmKIcmLIcmMIcmNIcmOIcmP
Number111111111
ComponentIcmQIcmRIcmSIcmTIcmVIcmWIcmXLvgA
Number11111111

The information of T4SS components from NC_002942
Region 1: 479014..515432
#Locus tag (Gene)Coordinates [+/-], size (bp)Protein GIProductComponent
1lpg0437474811..476811 [+], 200152840682hypothetical protein  interaction
2lpg0438477096..477314 [-], 21952840683hypothetical protein 
3lpg0439477490..478539 [-], 105052840684hypothetical protein 
4lpg0440478631..478843 [+], 21352840685hypothetical protein 
5lpg0441 (icmT)479014..479274 [+], 26152840686IcmT protein  IcmT
6lpg0442 (icmS)479275..479619 [+], 34552840687IcmS protein  IcmSaccesspry protein
7lpg0443 (icmR)479719..480081 [+], 36352840688IcmR  IcmR
8lpg0444 (icmQ)480148..480747 [+], 60052840689IcmQ protein  IcmQ
9lpg0445 (icmP)480922..482064 [+], 114352840690IcmP protein  IcmP
10lpg0446 (icmO)482061..484412 [+], 235252840691IcmO protein  IcmO
11lpg0447 (lphA)484816..485385 [+], 57052840692protein LphA  IcmN
12lpg0448 (icmM)485397..485681 [+], 28552840693IcmM (DotJ)  IcmM
13lpg0449 (icmL)485697..486335 [+], 63952840694IcmL protein  IcmL
14lpg0450 (icmK)486335..487420 [+], 108652840695IcmK protein  IcmK
15lpg0451 (icmE)487425..490571 [+], 314752840696IcmE protein  IcmE
16lpg0452 (icmG)490586..491395 [+], 81052840697IcmG protein  IcmG
17lpg0453 (icmC)491403..491987 [+], 58552840698hypothetical protein  IcmC
18lpg0454 (icmD)492130..492411 [+], 28252840699IcmD protein  IcmD
19lpg0455 (icmJ)492591..493235 [+], 64552840700IcmJ protein  IcmJ
20lpg0456 (icmB)493271..496300 [+], 303052840701IcmB protein  IcmB
21lpg0457 (tphA)496446..497702 [-], 125752840702TphA (ProP) 
22lpg0458 (icmF)497705..500626 [-], 292252840703IcmF  IcmF
23lpg0459 (icmH)500626..501411 [-], 78652840704IcmH (DotU)  IcmH
24lpg0460 (purH)501696..503285 [-], 159052840705bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase 
25lpg0461 (prmA)503312..504181 [-], 8705284070650S ribosomal protein L11 methyltransferase 
26lpg0462 (accC)504183..505532 [-], 135052840707acetyl CoA carboxylase, biotin carboxylase subunit 
27lpg0463505539..506021 [-], 48352840708acetyl-CoA carboxylase biotin carboxyl carrier protein 
28lpg0464 (aroQ)506035..506472 [-], 438528407093-dehydroquinate dehydratase 
29lpg0465506479..506718 [-], 24052840710hypothetical protein 
30lpg0466506656..508464 [+], 180952840711pyruvate carboxylase subunit B 
31lpg0467509030..510661 [+], 163252840712zinc metalloprotease 
32lpg0468510663..511514 [-], 85252840713lipase A 
33lpg0469511961..512734 [+], 77452840714hypothetical protein 
34lpg0470512912..513922 [-], 101152840715fructose bisphosphate aldolase 
35lpg0471 (poxF)514072..514818 [-], 74752840716phenol hydroxylase 
36lpg0472514890..515432 [+], 54352840717IcmC protein  IcmC
37lpg0473515576..515872 [-], 29752840718hypothetical protein 
38lpg0474516084..516827 [+], 74452840719CDP-diacylglycerol--serine O-phosphatidyltransferase 
39lpg0475 (ptsH)517068..517337 [-], 27052840720sugar transport PTS system phosphocarrier HPr protein 
40lpg0476517528..517827 [-], 30052840721sigma-54 modulation protein 
41lpg0477517854..519248 [-], 139552840722RNA polymerase factor sigma-54 
42lpg0478 (rpmG)519458..519622 [-], 1655284072350S ribosomal protein L33 
43lpg0479 (rpmB)519637..519873 [-], 2375284072450S ribosomal protein L28 
44lpg0480519971..520132 [+], 16252840725hypothetical protein 
 
Region 2: 566512..567138
#Locus tag (Gene)Coordinates [+/-], size (bp)Protein GIProductComponent
1lpg0520563556..564326 [-], 77152840765UbiE/COQ5 family methlytransferase 
2lpg0521564280..564888 [-], 60952840766hypothetical protein 
3lpg0522564885..565352 [-], 46852840767acetyltransferase 
4lpg0523 (aacA4)565504..566067 [-], 56452840768aminoglycoside N (6')-acetyltransferase 
5lpg0525566512..567138 [+], 62752840769virulence protein  LvgAaccesspry protein
6lpg0526567168..567602 [-], 43552840770hypothetical protein 
7lpg0527567697..568848 [-], 115252840771hypothetical protein 
8lpg0528 (sdhC)569140..569532 [+], 39352840772succinate dehydrogenase cytochrome b556 subunit C 
9lpg0529 (sdhD)569526..569873 [+], 34852840773succinate dehydrogenase hydrophobic membrane anchor protein subunit D 
10lpg0530 (sdhA)569875..571644 [+], 177052840774succinate dehydrogenase flavoprotein subunit A 
 
Region 3: 3021320..3039999
#Locus tag (Gene)Coordinates [+/-], size (bp)Protein GIProductComponent
1lpg2670 (ftsY)3016947..3018053 [-], 110752842876cell division membrane protein FtsY 
2lpg26713018077..3019402 [+], 132652842877zinc protease 
3lpg26723019399..3020703 [+], 130552842878zinc protease 
4lpg26733020700..3021245 [+], 54652842879N-6 adenine-specific DNA methylase 
5lpg2674 (dotD)3021320..3021811 [+], 49252842880lipoprotein DotD  DotD
6lpg2675 (dotC)3021792..3022703 [+], 91252842881DotC  DotC
7lpg2676 (dotB)3022673..3023836 [+], 116452842882ATPase  DotB
8lpg26773023919..3025646 [+], 1728528428835'-nucleotidase 
9lpg26783025688..3026485 [-], 79852842884hypothetical protein 
10lpg26793026515..3027459 [-], 94552842885D-isomer specific 2-hydroxyacid dehydrogenase 
11lpg2680 (murE3)3027690..3028718 [+], 102952842886UDP-N-acetylmuramyl tripeptide synthase 
12lpg26813028993..3029880 [+], 888528428874-hydroxy-2-oxovalerate aldolase 
13lpg26823030019..3030726 [+], 70852842888hypothetical protein 
14lpg26833030713..3032560 [+], 184852842889DlpA protein 
15lpg26843032560..3033420 [+], 86152842890hypothetical protein 
16lpg26853033585..3034331 [-], 74752842891dienelactone hydrolase 
17lpg2686 (dotA)3034433..3037579 [-], 314752842892defect in organelle trafficking protein DotA  DotA
18lpg2687 (icmV)3037576..3038031 [-], 45652842893intracellular multiplication protein IcmV  IcmV
19lpg2688 (icmW)3038144..3038599 [+], 45652842894intracellular multiplication protein IcmW  IcmWaccesspry protein
20lpg2689 (icmX)3038599..3039999 [+], 140152842895intracellular multiplication protein IcmX  IcmX
21lpg2690 (lphB)3040006..3041637 [-], 163252842896protein LphB 
22lpg26913041997..3044540 [+], 254452842897cation transporting ATPase PacS 
 
accesspry protein This T4SS contains information of accessory protein.
flank Genes in the 5-Kb flanking regions if available, or non-essential genes in the T4SS gene cluster if any.

Download FASTA format files
Proteins        Genes
Allows survival and growth in macrophages, prevent phagosome acifidication and lysosome fusion, essential for induction of apoptosis in human macrophages

Effectors
RavA, CegC1/PlcC, lpg0021, RavB, AnkQ/legA10, lpg0041, lpg0045, lpg0046, Ceg2, Ceg3, lpg0081, Lem1, Ceg4, VipF, CegC2, sidP, SdhB, cetLP1, RavD, RavC, LegU1, lpg0172, lpg0181, Ceg5, RavE, RavF, RavG, Ceg7, SidE/laiD, Ceg8, Ceg9, lpg0257, lpg0260, SdbA, LegG2, Ceg10, Lem2, lpg0294, lpg0364, lpg0365, lpg0375, SdhA, VipA, lpg0393, LegA7/ceg11, AnkY/legA9, AnkG/ankZ/legA7, lpg0405, LegY, AnkJ/legA11, Ceg14, Ceg15, AnkC/legA12, LegD2, lpg0518, Ceg17, SidA, lpg0634, WipB, AnkN/ankX legA8, Lem3, lpg0716, RavH, lpg0796, Ceg18, RavI, LidA, RavJ, LegL1, lpg0963, lpg0967, SidK, RavK, lpg1083, Lem4, lpg1106, RavL, RavM, Lem5, RavN, Lem6, Ceg19, lpg1124, RavO, lpg1137, CegC3, Lem7, lpg1147, lpg1148, RavP, RavQ, lpg1158, RavR, lpg1171, RavS, VpdB, lpg1273, Lem8, LegC1, RavT, RavW, LegT, SidG, EnhC homologue, Lgt1, LicA, VpdC, lpg1449, lpg1453, LegK1, lpg1484, Lgt3/legc5, RavX, Lem9, Lem10, RavY, lpg1578, LegC6, Lem11, LegL2, Ceg23, Lem23, lpg1639, SidB, lpg1654, LegL3, lpg1661, cetLP3, lpg1666, lpg1667, lpg1670, RavZ, lpg1684, lpg1685, MavA, lpg1689, lpg1692, PpeA/legC3, PpeB, lpg1716, lpg1717, AnkI/legAS4, lpg1751, lpg1752, lpg1776, RvfA, MarB, lpg1803, Ceg25, Lem14, YlfB/legC2, lpdA, LegLC8, lpg1907, lpg1924, Lem15, Lem16, LegLC4, Lem17, RalF, LegC4, LegL5, lpg1959, LirA, lpg1961, LirB, PieA/lirC, PieB/lirD, PieC/lirE, PieD/lirF, PieE, PieF, lpg1975, PieG/legG1, SetA, lpg1986, lpg2050, LegA6, LegK2, AnkB/legAU13/ceg27, MavC, MvcA, lpg2149, SdeC, SdeC, SidJ, SdeB, LaiA/SdeA, lpg2160, Lem19, LegS2, CegC4, CegC4, WipC, LegA2, Lem20, LpnE, lpg2223, PpgA, lpg2239, Lem21, lpg2271, YlfA/legC7, AnkH/legA3, ankW, Ceg28(RidL), AnkK/legA5, lpg2327, Lem22, MavE, MavF, lpg2359, lpg2370, lpg2372, lpg2382, SdbC, LegL6, LegL6, Lem23, lpg2407, Ceg29, VpdA, Lem24, LegA1, lpg2420, Lem25, MavG, MavH, Ceg30, lpg2434, lpg2443, MavI, AnkF/legA14/ceg31, GobX, AnkD/legA15, lpg2461, SidM/drrA, SidD, SdbB, LepB, MavJ, SidI/ceg32, lpg2505, SdjA, SdeD, SdcA, SidC, Lem26, MavK, MavL, LnaB, Lem27, lpg2538, lpg2539, lpg2541, lpg2546, LecE, lpg2555, LegK3, MavM, SidF, LegS1, Ceg33, Lem28, lpg2628, lpg2637, MavV, lpg2692, LegD1, WipA, LegN, lpg2744, lpg2745, LepA, Lem29, VipE, MavN, lppA, Ceg34, lpg2828, SidH, LubX/legU2, VipD, lpg2832, lpg2844, Lgt2/legC8, lpg2874, lpg2879, lpg2884, lpg2885, lpg2888, LncP, lpg2912, lpg2936, lpg2975, LegP, lpg3000

The information of protein effectors
#Locus tag (Gene)Coordinates [+/-], size (bp)Protein GIProduct  *

interaction This effector contains information of interaction.

Download FASTA format files
Proteins        Genes
The information on structure of this T4ss

#NameImageResourceDetailReference
1AnkX4BEP PDB (4BEP)Crystal structure of the Legionella pneumophila FIC domain-containing effector AnkX protein (apo-form).(1) PubMed: 23572077
2DotD3ADY PDB (3ADY)Crystal structure of DotD from Legionella.(2) PubMed: 20949065
3DotF fused to a superfolder GFP0566 EMDB(0566)Subtomogram average of the Legionella pneumophila Dot/Icm type IV secretion system with DotF fused to a superfolder GFP (aligning the OM-complex).(3) PubMed: 31011165
4DotI3WZ4 PDB (3WZ4)Structure of the periplasmic domain of DotI (crystal form I).(4) PubMed: 26039110
5DotI3WZ5 PDB (3WZ5)Structure of the periplasmic domain of DotI (crystal form II).(5) PubMed: 26039110
6DotL(590-659)-DotN5X42 PDB (5X42)Structure of DotL(590-659)-DotN derived from Legionella pneumophila.(6) PubMed: 28714967
7DotL(656-783)-IcmS-IcmW5X1E PDB (5X1E)Structure of DotL(656-783)-IcmS-IcmW derived from Legionella pneumophila.(7) PubMed: 28714967
8DotL(656-783)-IcmS-IcmW-LvgA5X90 PDB (5X90)Structure of DotL(656-783)-IcmS-IcmW-LvgA derived from Legionella pneumophila.(8) PubMed: 28714967
9DotM5X1U PDB (5X1U)Structure of the cytosolic domain of DotM derived from Legionella pneumophila.(9) PubMed: 28714967
10DotN5X1H PDB (5X1H)Structure of Legionella pneumophila DotN.(10) PubMed: 28714967
11DrrA/SidM3NKU PDB (3NKU)Crystal structure of the N-terminal domain of DrrA/SidM from Legionella pneumophila.(11) PubMed: 20651120
12IcmR and IcmQ3FXD PDB (3FXD)Crystal structure of interacting domains of IcmR and IcmQ.(12) PubMed: 19368892
13IcmR and IcmQ3FXE PDB (3FXE)Crystal structure of interacting domains of IcmR and IcmQ (seleno-derivative).(13) PubMed: 19368892
14IcmS-IcmW-DotL complex5XNB PDB (5XNB)Crystal structure of the IcmS-IcmW-DotL complex of the Legionella type IVb secretion system.(14) PubMed: 29203674
15Inner membrane complex8567 EMDB(8567)In vivo structure of the Legionella pneumophila Dot/Icm type IV secretion system (aligning the inner membrane complex).(15) PubMed: 28336774
16Inner membrane part8569 EMDB(8569)In vivo structure of the Legionella pneumophila Dot/Icm type IV secretion system core complex (aligning the inner membrane part).(16) PubMed: 28336774
17LegAS45CZY PDB (5CZY)Crystal structure of LegAS4.(17) PubMed: 26315269
18LegC34MU6 PDB (4MU6)Crystal Structure of the N-terminal domain of Effector Protein LegC3 from Legionella pneumophila.(18) PubMed: 24531477
19Lem144HFV PDB (4HFV)Crystal structure of lpg1851 protein from Legionella pneumophila (putative T4SS effector).(19) PubMed: 27986836
20Lgt12WZF PDB (2WZF)Legionella pneumophila glucosyltransferase crystal structure.(20) PubMed: 20030628
21LidA (60-594)4H5Y PDB (4H5Y)High-resolution crystal structure of Legionella pneumophila LidA (60-594).(21) PubMed: 24293259
22LidA in complex with active Rab8a3TNF PDB (3TNF)LidA from Legionella in complex with active Rab8a.(22) PubMed: 22011575
23Lpg03934R0G PDB (4R0G)Crystal structure of Lpg0393 from Legionella pneumophila.(23) PubMed: 25821953
24LpiR15FIA PDB (5FIA)Structure of the effector protein LpiR1 (Lpg0634) from Legionella pneumophila.(24) PubMed: 27226543
25LppA4TVV PDB (4TVV)Crystal structure of LppA from Legionella pneumophila.(25) PubMed: 25339170
26Outer membrane complex8566 EMDB(8566)In vivo structure of the Legionella pneumophila Dot/Icm type IV secretion system (aligning the outer membrane complex).(26) PubMed: 28336774
27Outer membrane complex8568 EMDB(8568)In vivo structure of the Legionella pneumophila Dot/Icm type IV secretion system core complex (aligning the outer membrane complex).(27) PubMed: 28336774
28PI(4)P-Specific Membrane Recruitment of DrrA/SidM4MXP PDB (4MXP)Structural Basis for PI(4)P-Specific Membrane Recruitment of the Legionella pneumophila Effector DrrA/SidM.(28) PubMed: 24530282
29Rab1b in complex with the GEF domain of DrrA/SidM3JZA PDB (3JZA)Crystal structure of human Rab1b in complex with the GEF domain of DrrA/SidM from Legionella pneumophila.(29) PubMed: 20064470
30RalF1XSZ PDB (1XSZ)The structure of RalF.(30) PubMed: 15520000
31RavZ5CQC PDB (5CQC)Crystal structure of the legionella pneumophila effector protein RavZ.(31) PubMed: 26343456
32RidL5OH5 PDB (5OH5)Legionella pneumophila RidL N-terminal retromer binding domain.(32) PubMed: 29146912
33RidL5OH6 PDB (5OH6)Legionella pneumophila RidL N-terminal domain lacking beta hairpin.(33) PubMed: 29146912
34SdeA5CRA PDB (5CRA)Structure of the SdeA DUB Domain.(34) PubMed: 26598703
35SdeA5CRB PDB (5CRB)Crystal Structure of SdeA DUB.(35) PubMed: 26598703
36SdeA5CRC PDB (5CRC)Structure of the SdeA DUB Domain.(36) PubMed: 26598703
37Se-labelled SidJ complex with CaM6K4L PDB (6K4L)Crystal structure of Se-labelled SidJ complex with CaM at 2.95 A.(37) PubMed: 31330531
38SidC4TRH PDB (4TRH)The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling.(38) PubMed: 25006264
39SidC4TRG PDB (4TRG)the SNL domain of SidC.(39) PubMed: 25006264
40SidD4IIP PDB (4IIP)Legionella pneumophila effector.(40) PubMed: 23696742
41SidF4FYE PDB (4FYE)Crystal structure of a Legionella phosphoinositide phosphatase, SidF.(41) PubMed: 22872863
42SidF4FYF PDB (4FYF)Structural basis for substrate recognition by a novel Legionella phosphoinositide phosphatase.(42) PubMed: 22872863
43SidF4FYG PDB (4FYG)Structural basis for substrate recognition by a novel Legionella phosphoinositide phosphatase.(43) PubMed: 22872863
44SidJ-CaM6K4K PDB (6K4K)Crystal structure of SidJ-CaM binary complex at 2.71 A.(44) PubMed: 31330531
45SidJ-CaM-AMP ternary complex6K4R PDB (6K4R)Crystal structure of SidJ-CaM-AMP ternary complex at 3.11 A.(45) PubMed: 31330531
46SidJ-Human calmodulin complex6S5T PDB (6S5T)Legionella pneumophila SidJ-Human calmodulin complex.(46) PubMed: 31330532
47VipD4AKF PDB (4AKF)Crystal structure of VipD from Legionella pneumophila.(47) PubMed: 23271971
48WipB5NNY PDB (5NNY)Crystal structure of the phosphatase domain from the Legionella effector WipB.(48) PubMed: 28842705
(1) Campanacci V et al. (2013). Structure of the Legionella effector AnkX reveals the mechanism of phosphocholine transfer by the FIC domain. EMBO J. 32(10):1469-77. [PudMed:23572077] experimental
(2) Nakano N et al. (2010). Crystal structure of Legionella DotD: insights into the relationship between type IVB and type II/III secretion systems. PLoS Pathog. 6(10):e1001129. [PudMed:20949065] experimental
(3) Ghosal D et al. (2019). Molecular architecture, polar targeting and biogenesis of the Legionella Dot/Icm T4SS. Nat Microbiol. 4(7):1173-1182. [PudMed:31011165] experimental
(4) Kuroda T et al. (2015). Molecular and structural analysis of Legionella DotI gives insights into an inner membrane complex essential for type IV secretion. Sci Rep. 5:10912. [PudMed:26039110] experimental
(5) Kuroda T et al. (2015). Molecular and structural analysis of Legionella DotI gives insights into an inner membrane complex essential for type IV secretion. Sci Rep. 5:10912. [PudMed:26039110] experimental
(6) Kwak MJ et al. (2017). Architecture of the type IV coupling protein complex of Legionella pneumophila. Nat Microbiol. 2:17114. [PudMed:28714967] experimental
(7) Kwak MJ et al. (2017). Architecture of the type IV coupling protein complex of Legionella pneumophila. Nat Microbiol. 2:17114. [PudMed:28714967] experimental
(8) Kwak MJ et al. (2017). Architecture of the type IV coupling protein complex of Legionella pneumophila. Nat Microbiol. 2:17114. [PudMed:28714967] experimental
(9) Kwak MJ et al. (2017). Architecture of the type IV coupling protein complex of Legionella pneumophila. Nat Microbiol. 2:17114. [PudMed:28714967] experimental
(10) Kwak MJ et al. (2017). Architecture of the type IV coupling protein complex of Legionella pneumophila. Nat Microbiol. 2:17114. [PudMed:28714967] experimental
(11) Müller MP et al. (2010). The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science. 329(5994):946-9. [PudMed:20651120] experimental
(12) Raychaudhury S et al. (2009). Structure and function of interacting IcmR-IcmQ domains from a type IVb secretion system in Legionella pneumophila. Structure. 17(4):590-601. [PudMed:19368892] experimental
(13) Raychaudhury S et al. (2009). Structure and function of interacting IcmR-IcmQ domains from a type IVb secretion system in Legionella pneumophila. Structure. 17(4):590-601. [PudMed:19368892] experimental
(14) Xu J et al. (2017). Structural insights into the roles of the IcmS-IcmW complex in the type IVb secretion system of Legionella pneumophila. Proc Natl Acad Sci U S A. 114(51):13543-13548. [PudMed:29203674] experimental
(15) Ghosal D et al. (2017). In situ structure of the Legionella Dot/Icm type IV secretion system by electron cryotomography. EMBO Rep. 18(5):726-732. [PudMed:28336774] experimental
(16) Ghosal D et al. (2017). In situ structure of the Legionella Dot/Icm type IV secretion system by electron cryotomography. EMBO Rep. 18(5):726-732. [PudMed:28336774] experimental
(17) Son J et al. (2015). Crystal structure of Legionella pneumophila type IV secretion system effector LegAS4. Biochem Biophys Res Commun. 465(4):817-24. [PudMed:26315269] experimental
(18) Yao D et al. (2014). Structure of the N-terminal domain of the effector protein LegC3 from Legionella pneumophila. Acta Crystallogr D Biol Crystallogr. 70(Pt 2):436-41. [PudMed:24531477] experimental
(19) Urbanus ML et al. (2016). Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila. Mol Syst Biol. 12(12):893. [PudMed:27986836] experimental
(20) Hurtado-Guerrero R et al. (2010). Molecular mechanism of elongation factor 1A inhibition by a Legionella pneumophila glycosyltransferase. Biochem J. 426(3):281-92. [PudMed:20030628] experimental
(21) Meng G et al. (2013). The crystal structure of LidA, a translocated substrate of the Legionella pneumophila type IV secretion system.. Protein Cell. 4(12):897-900. [PudMed:24293259] experimental
(22) Schoebel S et al. (2011). Protein LidA from Legionella is a Rab GTPase supereffector. Proc Natl Acad Sci U S A. 108(44):17945-50. [PudMed:22011575] experimental
(23) Sohn YS et al. (2015). Lpg0393 of Legionella pneumophila is a guanine-nucleotide exchange factor for Rab5, Rab21 and Rab22. PLoS One. 10(3):e0118683. [PudMed:25821953] experimental
(24) Beyrakhova KA et al. (2016). Structural and Functional Investigations of the Effector Protein LpiR1 from Legionella pneumophila. J Biol Chem. 291(30):15767-77. [PudMed:27226543]
(25) Weber S et al. (2014). A type IV translocated Legionella cysteine phytase counteracts intracellular growth restriction by phytate. J Biol Chem. 289(49):34175-88. [PudMed:25339170] experimental
(26) Ghosal D et al. (2017). In situ structure of the Legionella Dot/Icm type IV secretion system by electron cryotomography. EMBO Rep. 18(5):726-732. [PudMed:28336774] experimental
(27) Ghosal D et al. (2017). In situ structure of the Legionella Dot/Icm type IV secretion system by electron cryotomography. EMBO Rep. 18(5):726-732. [PudMed:28336774] experimental
(28) Del Campo CM et al. (2014). Structural basis for PI(4)P-specific membrane recruitment of the Legionella pneumophila effector DrrA/SidM. Structure. 22(3):397-408. [PudMed:24530282] experimental
(29) Schoebel S et al. (2009). RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol Cell. 36(6):1060-72. [PudMed:20064470] experimental
(30) Amor JC et al. (2005). The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site. J Biol Chem. 280(2):1392-400. [PudMed:15520000] experimental
(31) Horenkamp FA et al. (2015). The Legionella Anti-autophagy Effector RavZ Targets the Autophagosome via PI3P- and Curvature-Sensing Motifs. Dev Cell. 34(5):569-76. [PudMed:26343456] experimental
(32) Bärlocher K et al. (2017). Structural insights into Legionella RidL-Vps29 retromer subunit interaction reveal displacement of the regulator TBC1D5. Nat Commun. 8(1):1543. [PudMed:29146912] experimental in_silico
(33) Bärlocher K et al. (2017). Structural insights into Legionella RidL-Vps29 retromer subunit interaction reveal displacement of the regulator TBC1D5. Nat Commun. 8(1):1543. [PudMed:29146912] experimental in_silico
(34) Sheedlo MJ et al. (2015). Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination. Proc Natl Acad Sci U S A. 112(49):15090-5. [PudMed:26598703] experimental
(35) Sheedlo MJ et al. (2015). Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination. Proc Natl Acad Sci U S A. 112(49):15090-5. [PudMed:26598703] experimental
(36) Sheedlo MJ et al. (2015). Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination. Proc Natl Acad Sci U S A. 112(49):15090-5. [PudMed:26598703] experimental
(37) Gan N et al. (2019). Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase. Nature. 572(7769):387-391. [PudMed:31330531] experimental
(38) Hsu F et al. (2014). The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling. Proc Natl Acad Sci U S A. 111(29):10538-43. [PudMed:25006264] experimental
(39) Hsu F et al. (2014). The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling. Proc Natl Acad Sci U S A. 111(29):10538-43. [PudMed:25006264] experimental
(40) Chen Y et al. (2013). Structural basis for Rab1 de-AMPylation by the Legionella pneumophila effector SidD. PLoS Pathog. 9(5):e1003382. [PudMed:23696742] experimental
(41) Hsu F et al. (2012). Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proc Natl Acad Sci U S A. 109(34):13567-72. [PudMed:22872863] experimental
(42) Hsu F et al. (2012). Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proc Natl Acad Sci U S A. 109(34):13567-72. [PudMed:22872863] experimental
(43) Hsu F et al. (2012). Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proc Natl Acad Sci U S A. 109(34):13567-72. [PudMed:22872863] experimental
(44) Gan N et al. (2019). Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase. Nature. 572(7769):387-391. [PudMed:31330531] experimental
(45) Gan N et al. (2019). Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase. Nature. 572(7769):387-391. [PudMed:31330531] experimental
(46) Bhogaraju S et al. (2019). Inhibition of bacterial ubiquitin ligases by SidJ-calmodulin catalysed glutamylation. Nature. 572(7769):382-386. [PudMed:31330532] experimental
(47) Ku B et al. (2012). VipD of Legionella pneumophila targets activated Rab5 and Rab22 to interfere with endosomal trafficking in macrophages. PLoS Pathog. 8(12):e1003082. [PudMed:23271971] experimental
(48) Prevost MS et al. (2017). The Legionella effector WipB is a translocated Ser/Thr phosphatase that targets the host lysosomal nutrient sensing machinery. Sci Rep. 7(1):9450. [PudMed:28842705] experimental
The information on requirements for T4SS substrate-channel docking

Certain T4SS substrates require secretion chaperones for translocation. These chaperones often possess physical properties (small size of 15 kDa, acidic pI, and amphipathic helices) resembling those of chaperones associated with the type III secretion systems, a family of macromolecular translocation systems ancestrally related to bacterial flagella.

#Accessory protein(GI)motif(s)Substrate(s)FunctionReference
1IcmS (52840687)C-terminal fragment-The IcmS adaptors essential for translocation of different subsets of effectors through the Legionella Dot/Icm translocation apparatus.(1) PubMed: 28714967
2IcmS (52840687)NDSdeASdeA is secreted into host cells in an IcmS-dependent manner.(2) PubMed: 15773981
3IcmS/IcmW (chaperones)CT Val-2 and Leu-3 required for translocationAnkBThe IcmSW chaperone complex is essential for translocation of AnkB.(3) PubMed: 18811729
4IcmS/IcmW (chaperones)C-terminal hydrophbic tail, CT20aasidGThe IcmSW complex interacts with a central region of the SidG protein. It resulted in a conformational change in the SidG protein as determined by differences in protease sensitivity in vitro. (4) PubMed: 18069892
5IcmS/IcmW (chaperones)C-terminal hydrophobic tail, CT100aa sufficientsidCIcmSW could enhance effector protein translocation by mediating a conformational change. (5) PubMed: 16714592
6IcmS/IcmW (chaperones)C-terminal hydrophobic tail. CT30aa sufficientlegS2LegS2 translocation depends on a functional IcmS IcmW complex.(6) PubMed: 19438520
7IcmS/IcmW (chaperones)NDAnkJThe IcmSW chaperones are essential for translocation of AnkJ.(7) PubMed: 20028808
8IcmW (52842894)C-terminal fragment-The IcmW adaptors essential for translocation of different subsets of effectors through the Legionella Dot/Icm translocation apparatus.(8) PubMed: 19946141
9LvgA (52840769)C-terminal fragment-The LvgA adaptors essential for translocation of different subsets of effectors through the Legionella Dot/Icm translocation apparatus.(9) PubMed: 28714967
Tips:
1.Substrate(s): For the conjugation systems, the listed proteins are relaxases that bind a cognate T4CP and are delivered to recipient cells. For the effector translocator systems, the listed proteins are effectors that play a role in the infection processes of the bacterial pathogen.
2.motif(s):The motifs listed are required for substrate translocation. In some cases, the protein or its C-terminal fragment (CT) is sufficient to mediate translocation to target cells, as shown by fusion to a reporter protein such as Cre recombinase or adenylate cyclase. Amino acids (aa) at positions listed relative to the C-terminal fragment (subscript) are required for translocation, as shown by mutational analysis. ND, not determined. Parentheses indicate that the interaction between a protein substrate and a cognate T4CP has been experimentally shown.
3.Accessory protein: Accessory factors required for T4SS channel docking or translocation. The proposed function in mediating substrate-T4SS channel docking is shown in parentheses.PubMed:19946141

(1) Kwak MJ et al. (2017). Architecture of the type IV coupling protein complex of Legionella pneumophila. Nat Microbiol. 2:17114. [PudMed:28714967] experimental
(2) Bardill JP; Miller JL; Vogel JP (2005). IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol Microbiol. 56(1):90-103. [PudMed:15773981] experimental
(3) Al-Khodor S; Price CT; Habyarimana F; Kalia A; Abu Kwaik Y (2008). A Dot/Icm-translocated ankyrin protein of Legionella pneumophila is required for intracellular proliferation within human macrophages and protozoa. Mol Microbiol. 70(4):908-23. [PudMed:18811729] experimental
(4) Cambronne ED; Roy CR (2007). The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation. PLoS Pathog. 3(12):e188. [PudMed:18069892] experimental
(5) VanRheenen SM; Luo ZQ; O'Connor T; Isberg RR (2006). Members of a Legionella pneumophila family of proteins with ExoU (phospholipase A) active sites are translocated to target cells. Infect Immun. 74(6):3597-606. [PudMed:16714592] experimental
(6) Degtyar E; Zusman T; Ehrlich M; Segal G (2009). A Legionella effector acquired from protozoa is involved in sphingolipids metabolism and is targeted to the host cell mitochondria. Cell Microbiol. 11(8):1219-35. [PudMed:19438520] experimental in_silico
(7) Habyarimana F et al. (2010). Molecular characterization of the Dot/Icm-translocated AnkH and AnkJ eukaryotic-like effectors of Legionella pneumophila. Infect Immun. 78(3):1123-34. [PudMed:20028808] experimental
(8) Alvarez-Martinez CE; Christie PJ (2009). Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev. 73(4):775-808. [PudMed:19946141]
(9) Kwak MJ et al. (2017). Architecture of the type IV coupling protein complex of Legionella pneumophila. Nat Microbiol. 2:17114. [PudMed:28714967] experimental
The information on host-pathogen interaction.

#Name(Protein GI)Host site/SubstrateSourceFunctionReference
1AnkB (52842358)Legionella-containing vacuole (LCV) membranemurineLegionella uses the AnkB to exploit processes of K48-linked polyubiquitination and the proteasome machineries to generate amino acids to satisfy its demands for amino acids.(1) PubMed: 22096100insolico
2AnkB (52842358)ParvBmurineAnkB colocalized with ParvB at the periphery of lamellipodia and can diminish ubiquitination of ParvB.(2) PubMed: 20345489insolico
3AnkN/ankX legA8 (52840932)Rab1 and Rab35humanAnkX modified both Rab1 and Rab35 by cAMP(Fic) domain-dependent manner.(3) PubMed: 21822290insolico
4AnkY/legA9 (52840647)unknownunknownLegA9 facilitates recruitment of the autophagic machinery to L. pneumophila vacuoles to clear infection.(4) PubMed: 23420491experimental
5Ceg14 (52840682)the cytoskeleton of host cellyeastCeg14 modulates the cytoskeleton of host cell and such toxicity can be alleviated by overexpression of profilin. Profilin is a protein involved in cytoskeletal structure in eukaryotes.(5) PubMed: 24286927experimental
6Ceg9 (52840501)Reticulon 4 (Rtn4)humanCeg9 interacts with Rtn4 to subvert vesicle trafficking.(6) PubMed: 26099580experimental
7CegC1/PlcC (52840268)Phosphatidylcholinehuman, amoebaePlcC can hydrolyzed a broad phospholipid spectrum and the addition of Zn(2+) ions activated PlcC-derived PLC activity.(7) PubMed: 23457299experimental
8GobX (52842663)Golgi membranesmurineGobX possesses E3 ubiquitin ligase activity and exploits host cell S-palmitoylation to localize to Golgi membranes.(8) PubMed: 26316537experimental
9IroT/mavN (52843011)unknownunknownIroT/mavN is a membrane protein and is involved in ferrous iron transport.(9) PubMed: 25141909insolico
10LaiA/SdeA (52842371)unknownunknownLaiA/SdeA can Promote bacterial adherence and uptake.(10) PubMed: 15972519experimental
11LecE (52842760)Pah1yeastLecE is found to activate the yeast lipin homolog Pah1. Pah1 is an enzyme to catalyze the conversion of diacylglycerol to phosphatidic acid. In eukaryotic cells, these two molecules are bioactive lipid signaling molecules.(11) PubMed: 23133385experimental
12LegAS4 (52841946)histone H3humanLegAS4 promotes rDNA transcription through its activity of SET-domain histone lysine methyltransferase (HKMTase).(12) PubMed: 23797873experimental
13LegG1 (52842193)RAs-related Nuclear protein (Ran)humanRan activation and RanBP1 can promote LCV formation and LegG1 functions as a bacterial Ran activator on LCVs to promote LCV motility, microtubule stabilization and intracellular replication of L. pneumophila.(13) PubMed: 24068924experimental
14LegK1 (52841713)NF-κBmurineLegK1 is essential for potent activation of the NF-kB pathway. LegK1 mimics host IKK and directly phosphorylates the Ser32 and Ser36 residues of the inhibitory IkBa protein, leading to IkBa ubiquitination/degradation and subsequent nuclear translocation of p65.(14) PubMed: 19666608experimental
15LegU1 (52840426)BAT3 (HLA-B associated transcript 3)humanLegU1 specifically interacts with the host chaperone protein BAT3 and can direct the ubiquitination of it.(15) PubMed: 20547746experimental
16Lem3 (52840933)Rab1humanLem3 has dephosphocholinase activity that can remove the phosphocholine group from Rab1 to reverse AnkX-mediated modification on Rab1.(16) PubMed: 22307087experimental
17LepA (52842990)unknownunknownLepA enabled the Legionella to commandeer a protozoan exocytic pathway for dissemination of it.(17) PubMed: 14988561experimental
18LepB (52842698)GTPhumanLepB has GTPase-activating protein activity and it can inactivate Rab1 by stimulating GTP hydrolysis to regulate removal of Rab proteins from membranes.(18) PubMed: 17952054experimental
19LepB (52842698)Phosphatidylinositol 3-phosphatehumanA functional domain (LepB_NTD) was identified in LepB. LepB_NTD has a lipid hinase activity that specifically converts PtdIns3P into PtdIns(3,4)P2.(19) PubMed: 27941800experimental
20Lgt1 (52841598)elongation factor(EF)1AhumanLgt1 selectively modifies the mammalian elongation factor (EF)1A by using UDP-glucose as a cosubstrate to inhibit eukaryotic protein synthesis and death of target cells.(20) PubMed: 17068130experimental
21Lgt1 (52841598)mechanistic target of rapamycin complex 1 (mTORC1)human, murineLgt family proteins result in activation of mTORC1.(21) PubMed: 29166595experimental
22Lgt2 (52843057)mechanistic target of rapamycin complex 1 (mTORC1)human, murineLgt family proteins result in activation of mTORC1.(22) PubMed: 29166595experimental
23Lgt3 (52841718)mechanistic target of rapamycin complex 1 (mTORC1)human, murineLgt family proteins result in activation of mTORC1.(23) PubMed: 29166595experimental
24LidA (52841175)Rab6A'humanRab6A' is a regulator of retrograde vesicle trafficking within eukaryotic cells. LidA blocks the hydrolysis of GTP by Rab6A' to maintain Rab6A' in the active conformation.(24) PubMed: 23569112experimental
25LidA (52841175)Rab1humanLidA interects with Rab1 to stabilizethe Rab1-guanosine nucleotide complex and interfer with the covalent modification of Rab1 by phosphocholination or AMPylation. (25) PubMed: 22228731experimental
26LnaB (52842735)NF-κBmurineLnaB can active NF-κB during L. pneumophila infection in host cells.(26) PubMed: 20148897experimental
27LncP (52843099)Mitochondrionhuman, murineLncP is incorporated into the mitochondrial inner membrane and catalyzes unidirectional transport and exchange of ATP transport across membranes.(27) PubMed: 22241989experimental
28LpdA (52842106)unknownyeastThe effector protein LpdA was found to contain a functional PLD domain and these enzymes were shown before to convert PC to PA and free choline.(28) PubMed: 23133385experimental
29Lpg0393 (52840638)RAB5, RAB21 and RAB22humanLpg0393 exhibited a guanine-nucleotide exchange factor activity and can activate RAB5, RAB21 and RAB22.(29) PubMed: 25821953experimental
30LpnE (52842435)OCRL1amoebaeLpnE binds to OCRL1 on LCVs. It possibly represents a bacterial mechanism to downregulate intracellular replication to sustaining a protective niche, which would be lost upon rapid killing of the host cell.(30) PubMed: 19021631experimental
31LppA (52843015)unknownunknownLppA has the activity of phytate phosphatase and counteracts bacterial growth restriction by phytate by hydrolyzing to inactivate the chelator.(31) PubMed: 25339170experimental
32LpSpl/LegS2 (52842389)Sphingosine-1-phosphate (S1P)murineLpSpl depletes host S1P to inhibit autophagy in the host cell. It also facilitate intracellular replication of Legionella pneumophila.(32) PubMed: 26831115experimental
33LubX (52843026)Clk1 (Cdc2-like kinase 1)murineLubX contains two domains that have a remarkable similarity to the U-box. It mediates polyubiquitination of host Clk1 and has ubiquitin ligase activity.(33) PubMed: 18284575experimental
34MavC (52842361)UBE2NmurineMavC induces monoubiquitination of UBE2N and ubiquitination of UBE2N dampens NF-κB signalling in the initial phase of bacterial infection.(34) PubMed: 30420781experimental
35MitF (LegG1) (52842193)Ran GTPasehumanMitF(LegG1) is a Ran GTPase activator and induces mitochondrial fragmentation.(35) PubMed: 28867389experimental
36PieA/lirC (52842180)Legionella-containing vacuole (LCV)humanPieA can alter lysosome morphology.(36) PubMed: 19165328experimental
37PieE (52842186)Endoplasmic reticulum (ER)humanPieE localized to ER and interacted with Rab GTPases 1a, 1b, 2a, 5c, 6a, 7, and 10.(37) PubMed: 25118235insolico
38PpeA/legC3 (52841929)unknownunknownLegC3 subverts vesicle trafficking to contribute to the intracellular trafficking of L. pneumophila.(38) PubMed: 18670632experimental
39RalF (52842167)ADP ribosylation factor (ARF) family murineRalF functions as an exchange factor for the ADP ribosylation factor (ARF) family of GTPases. The RalF protein is enssential for the localization of ARF on phagosomes which contains L. pneumophila.(39) PubMed: 11809974experimental
40RavD (52840415)Linear ubiquitinhumanRavD harbours deubiquitinase activity specific for linear ubiquitin to inhibit the NF-κB pathway during infection.(40) PubMed: 31110362experimental
41RavK (52841204)actinhuman, apeRavK harbors an H95EXXH99 motif associated with diverse metalloproteases and targets to the actin to cleave it at a site between residues Thr351 and Phe352.(41) PubMed: 28129393experimental
42RavZ (52841911)Atg8 proteinshumanRavZ directly uncouple Atg8 proteins attached to phosphatidylethanolamine on autophagosome membranes to interfere with autophagy. RavZ hydrolyzed the amide bond between the carboxyl-terminal glycine residue and an adjacent aromatic residue in Atg8 proteins which produces an Atg8 protein that could not be reconjugated by Atg7 and Atg3.(42) PubMed: 23112293experimental
43RidL (52842521)Vps29amoebaeRidL binds the Vps29 retromer subunit. Then it blocks retrograde vesicle trafficking and promotes intracellular bacterial replication.(43) PubMed: 29146912experimental
44SdcA (52842718)Phosphatidylinositol-4-phosphate (PtdIns4P)amoebaeSdcA directly and specifically binds to PI(4)P to modulate host cell PI metabolism.(44) PubMed: 16710455experimental
45SdhA (52840621)unknownunknownSdhA prevents bacterial DNA release into macrophage cytosol and is critical for L.pneumophila growth. The absence of SdhA resulted in IL-1β secretion, elevated caspase-1 activation and macrophage pyroptosis during Legionella infection. (45) PubMed: 22474394experimental
46SetA (52842195)Phosphatidylinositol 3-phosphatehumanSetA has the activity of glycohydrolase and mono-O-glucosyltransferase and it binds to PtdIns(3)P. SetA guides the Legionella effector to the surface of LCV and subvert vesicle trafficking to promote cell death.(46) PubMed: 22288428experimental
47SidC (52842719)Phosphatidylinositol-4-phosphate (PtdIns4P)murineDuring the maturation of LCVs, SidC and SdcA play a role in three consecutive steps, which are the interaction with early secretory vesicles, the recruitment of ER vesicles and the membrane dynamics of the LCVs.(47) PubMed: 18673369experimental
48SidC (52842719)UbiquitinhumanSidC is an E3 ubiquitin ligase and is important for the enrichment of ER proteins and ubiquitin conjugates to bacterial vacuoles.(48) PubMed: 25006264experimental
49SidD (52842673)Rab1murineSidD catalyzed AMP release from Rab1 and generate de-AMPylated Rab1. The de-AMPylated Rab1 can be inactivated by LepB.(49) PubMed: 21680813experimental
50SidE (52840489)small GTPasehumanSidE can ubiquitinate several small GTPases of the Rab family. These small GTPases are associated with the endoplasmic reticulum.(50) PubMed: 27049943experimental
51SidF (52842790)D3 phosphate of PI(3,4)P2 and PI(3,4,5)P3 on LCVmurineSidF hydrolyzes PI(3,4)P2 and PI(3,4,5)P3, which may cause the accumulation of PI(4)P on LCV and recruitment of other effectors that anchor on the LCV membrane through the binding to PI(4)P. SidF may facilitate the programming of LCV for bacterial growth to escape from the degradative phagolysosomal pathway.(51) PubMed: 22872863experimental
52SidF (52842790)BNIP3 and Bcl-rambohuman, murineSidF contributes to apoptosis resistance of L. pneumophila by interacting with two proapoptotic members of Bcl2 protein family, BNIP3 and Bcl-rambo.(52) PubMed: 17360363experimental
53SidI (52842712)eEF1A and eEF1BgammamurineSidI specifically interacts with eEF1A and eEF1Bgamma to inhibit host protein synthesis.(53) PubMed: 19386084experimental
54SidJ (52842369)Rab33bhumanSidJ is a ubiquitindeconjugating enzyme to impose temporal regulation on the activity of SidE effectors and deubiquitinate Rab33b.(54) PubMed: 28497808experimental
55SidJ (52842369)glutamatehumanSidJ is a glutamylase and can block the ubiquitin ligase activity of SdeA via modifing the catalytic glutamate in the mono-ADP ribosyl transferase domain of the SdeA.(55) PubMed: 31330532experimental
56SidK (52841203)VatAyeastSidK interacts with a key component of the proton pump named VatA and leads to the inhibition of ATP hydrolysis and proton translocation. A domain located in the N-terminal portion of SidK is responsible for its interactions with VatA.(56) PubMed: 20333253experimental
57SidM/drrA (52842672)Rab1murineSidM is a guanosine nucleotide exchange factor which targets host cell Rab1. It interferes with the secretory pathway and causes Golgi fragmentation.(57) PubMed: 16824952experimental
58SidM/drrA (52842672)Phosphatidylinositol-4-phosphate (PtdIns4P)yeastSidM/drrA binds PI(4)P mediated by a P4M domain and it activates and AMPylates Rab1.(58) PubMed: 25643265experimental
59SidP (52840385)PI(3)P and PI(3,5)P2yeastSidP functions as a PI-3-phosphatase which specifically hydrolyze PI(3)P and PI(3,5)P2 in vitro. Then pathogenic bacteria can subvert host cell phosphoinositide (PI) metabolism.(59) PubMed: 23843460experimental
60VipA (52840635)actinhumanVipA is a actin nucleator that can alter cytoskeleton dynamics to target host cell pathways to contribute to the intracellular lifestyle of Legionella.(60) PubMed: 22383880experimental
61VipD (52843027)Phosphatidylinositol 3-phosphateapeVipD localizes to endosomes to catalyze the removal of Phosphatidylinositol 3-phosphate from endosomal membranes only upon binding to endosomal Rab5 or Rab22.(61) PubMed: 24616501experimental
62VipD (52843027)Rab5 and Rab22human, murineVipD interferes with endosomal trafficking in macrophages by targeting Rab5 and Rab22.(62) PubMed: 23271971experimental
63WipA (52842923)lysosomehumanWipA (lpg2718) harbours a Ser/Thr phosphatase domain and targets to lysosome to modulate cellular nutrient sensing and the control of energy metabolism.(63) PubMed: 28842705experimental
64YlfA/legC7 (52842508)unknownunknownYlfA/legC7 subverts vesicle trafficking to contribute to the intracellular trafficking of L. pneumophila.(64) PubMed: 18670632experimental
65YlfB/legC2 (52842102)unknownunknownYlfB/legC2 subverts vesicle trafficking to contribute to the intracellular trafficking of L. pneumophila.(65) PubMed: 18670632experimental
experimental This T4SE is mentioned in the literature.
insolico This T4SE is highly identical with the protein mentioned in the literature.
(1) Price CT et al. (2011). Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science. 334(6062):1553-7. [PudMed:22096100] experimental
(2) Lomma M et al. (2010). The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell Microbiol. 12(9):1272-91. [PudMed:20345489] experimental
(3) Mukherjee S et al. (2011). Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature. 477(7362):103-6. [PudMed:21822290] experimental
(4) Khweek AA et al. (2013). A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy. Eur J Immunol. 43(5):1333-44. [PudMed:23420491] experimental
(5) Guo Z et al. (2014). A Legionella effector modulates host cytoskeletal structure by inhibiting actin polymerization. Microbes Infect. 16(3):225-36. [PudMed:24286927] experimental
(6) Haenssler E et al. (2015). Endoplasmic Reticulum Tubule Protein Reticulon 4 Associates with the Legionella pneumophila Vacuole and with Translocated Substrate Ceg9. Infect Immun. 83(9):3479-89. [PudMed:26099580] experimental
(7) Aurass P et al. (2013). The Legionella pneumophila Dot/Icm-secreted effector PlcC/CegC1 together with PlcA and PlcB promotes virulence and belongs to a novel zinc metallophospholipase C family present in bacteria and fungi. J Biol Chem. 288(16):11080-92. [PudMed:23457299] experimental
(8) Lin YH et al. (2015). Host Cell-catalyzed S-Palmitoylation Mediates Golgi Targeting of the Legionella Ubiquitin Ligase GobX. Biol Chem. 290(42):25766-81. [PudMed:26316537] experimental
(9) Portier E et al. (2015). IroT/mavN, a new iron-regulated gene involved in Legionella pneumophila virulence against amoebae and macrophages. Environ Microbiol. 17(4):1338-50. [PudMed:25141909] experimental
(10) Chang B et al. (2005). Identification of a novel adhesion molecule involved in the virulence of Legionella pneumophila. Infect Immun. 73(7):4272-80. [PudMed:15972519] experimental
(11) Viner R et al. (2012). Identification of two Legionella pneumophila effectors that manipulate host phospholipids biosynthesis. PLoS Pathog. 8(11):e1002988. [PudMed:23133385] experimental
(12) Li T et al. (2013). SET-domain bacterial effectors target heterochromatin protein 1 to activate host rDNA transcription. EMBO Rep. 14(8):733-40. [PudMed:23797873] experimental
(13) Rothmeier E et al. (2013). Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection. PLoS Pathog. 9(9):e1003598. [PudMed:24068924] experimental
(14) Ge J; Xu H; Li T; Zhou Y; Zhang Z; Li S; Liu L; Shao F (2009). A Legionella type IV effector activates the NF-kappaB pathway by phosphorylating the IkappaB family of inhibitors. Proc Natl Acad Sci U S A. 106(33):13725-30. [PudMed:19666608] experimental
(15) Ensminger AW et al. (2010). E3 ubiquitin ligase activity and targeting of BAT3 by multiple Legionella pneumophila translocated substrates. Infect Immun. 78(9):3905-19. [PudMed:20547746] experimental
(16) Goody PR; Heller K; Oesterlin LK; Muller MP; Itzen A; Goody RS (2012). Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J. 31(7):1774-84. [PudMed:22307087] experimental
(17) Chen J; de Felipe KS; Clarke M; Lu H; Anderson OR; Segal G; Shuman HA (2004). Legionella effectors that promote nonlytic release from protozoa. Science. 303(5662):1358-61. [PudMed:14988561] experimental
(18) Ingmundson A et al. (2007). Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature. 450(7168):365-9. [PudMed:17952054] experimental
(19) Dong N et al. (2016). Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector. Nat Microbiol. 2:16236. [PudMed:27941800] experimental
(20) Belyi Y et al. (2006). Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc Natl Acad Sci U S A. 103(45):16953-8. [PudMed:17068130] experimental
(21) De Leon JA et al. (2017). Positive and Negative Regulation of the Master Metabolic Regulator mTORC1 by Two Families of Legionella pneumophila Effectors. Cell Rep. 21(8):2031-2038. [PudMed:29166595] experimental
(22) De Leon JA et al. (2017). Positive and Negative Regulation of the Master Metabolic Regulator mTORC1 by Two Families of Legionella pneumophila Effectors. Cell Rep. 21(8):2031-2038. [PudMed:29166595] experimental
(23) De Leon JA et al. (2017). Positive and Negative Regulation of the Master Metabolic Regulator mTORC1 by Two Families of Legionella pneumophila Effectors. Cell Rep. 21(8):2031-2038. [PudMed:29166595] experimental
(24) Chen Y et al. (2013). Targeting of the small GTPase Rab6A' by the Legionella pneumophila effector LidA. Infect Immun. 81(6):2226-35. [PudMed:23569112] experimental
(25) Neunuebel MR; Mohammadi S; Jarnik M; Machner MP (2012). Legionella pneumophila LidA affects nucleotide binding and activity of the host GTPase Rab1. J Bacteriol. 194(6):1389-400. [PudMed:22228731] experimental
(26) Losick VP et al. (2010). LnaB: a Legionella pneumophila activator of NF-kappaB. Cell Microbiol. 12(8):1083-97. [PudMed:20148897] experimental
(27) Dolezal P; Aili M; Tong J; Jiang JH; Marobbio CM; Lee SF; Schuelein R; Belluzzo S; Binova E; Mousnier A; Frankel G; Giannuzzi G; Palmieri F; Gabriel K; Naderer T; Hartland EL; Lithgow T (2012). Legionella pneumophila secretes a mitochondrial carrier protein during infection. PLoS Pathog. 8(1):e1002459. [PudMed:22241989] experimental in_silico
(28) Viner R et al. (2012). Identification of two Legionella pneumophila effectors that manipulate host phospholipids biosynthesis. PLoS Pathog. 8(11):e1002988. [PudMed:23133385] experimental
(29) Sohn YS et al. (2015). Lpg0393 of Legionella pneumophila is a guanine-nucleotide exchange factor for Rab5, Rab21 and Rab22. PLoS One. 10(3):e0118683. [PudMed:25821953] experimental
(30) Weber SS; Ragaz C; Hilbi H (2009). The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cell Microbiol. 11(3):442-60. [PudMed:19021631] experimental
(31) Weber S et al. (2014). A type IV translocated Legionella cysteine phytase counteracts intracellular growth restriction by phytate. J Biol Chem. 289(49):34175-88. [PudMed:25339170] experimental
(32) Rolando M et al. (2016). Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proc Natl Acad Sci U S A. 113(7):1901-6. [PudMed:26831115] experimental
(33) Kubori T; Hyakutake A; Nagai H (2008). Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol. 67(6):1307-19. [PudMed:18284575] experimental
(34) Gan N et al. (2019). Legionella pneumophila inhibits immune signalling via MavC-mediated transglutaminase-induced ubiquitination of UBE2N. Nat Microbiol. 4(1):134-143. [PudMed:30420781] experimental
(35) Escoll P et al. (2017). Legionella pneumophila Modulates Mitochondrial Dynamics to Trigger Metabolic Repurposing of Infected Macrophages. Cell Host Microbe. 22(3):302-316.e7. [PudMed:28867389] experimental
(36) Ninio S; Celli J; Roy CR (2009). A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles. PLoS Pathog. 5(1):e1000278. [PudMed:19165328] experimental
(37) Mousnier A et al. (2014). A new method to determine in vivo interactomes reveals binding of the Legionella pneumophila effector PieE to multiple rab GTPases. MBio. 5(4). pii: e01148-14. [PudMed:25118235] experimental
(38) de Felipe KS et al. (2008). Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog. 4(8):e1000117. [PudMed:18670632] experimental
(39) Nagai H et al. (2002). A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes.. Science. 295(5555):679-82. [PudMed:11809974] experimental
(40) Wan M et al. (2019). A bacterial effector deubiquitinase specifically hydrolyses linear ubiquitin chains to inhibit host inflammatory signalling. Nat Microbiol. 10.1038. [PudMed:31110362] experimental
(41) Liu Y et al. (2017). A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin. PLoS Pathog. 13(1):e1006186. [PudMed:28129393] experimental
(42) Choy A et al. (2012). The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science. 338(6110):1072-6. [PudMed:23112293] experimental
(43) Bärlocher K et al. (2017). Structural insights into Legionella RidL-Vps29 retromer subunit interaction reveal displacement of the regulator TBC1D5. Nat Commun. 8(1):1543. [PudMed:29146912] experimental in_silico
(44) Weber SS; Ragaz C; Reus K; Nyfeler Y; Hilbi H (2006). Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog. 2(5):e46. [PudMed:16710455] experimental
(45) Ge J et al. (2012). Preventing bacterial DNA release and absent in melanoma 2 inflammasome activation by a Legionella effector functioning in membrane trafficking. Proc Natl Acad Sci U S A. 109(16):6193-8. [PudMed:22474394] experimental
(46) Jank T et al. (2012). Domain organization of Legionella effector SetA. Cell Microbiol. 14(6):852-68. [PudMed:22288428] experimental
(47) Ragaz C; Pietsch H; Urwyler S; Tiaden A; Weber SS; Hilbi H (2008). The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol. 10(12):2416-33. [PudMed:18673369] experimental
(48) Hsu F et al. (2014). The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling. Proc Natl Acad Sci U S A. 111(29):10538-43. [PudMed:25006264] experimental
(49) Neunuebel MR et al. (2011). De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science. 333(6041):453-6. [PudMed:21680813] experimental
(50) Qiu J et al. (2016). Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature. 533(7601):120-4. [PudMed:27049943] experimental
(51) Hsu F et al. (2012). Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proc Natl Acad Sci U S A. 109(34):13567-72. [PudMed:22872863] experimental
(52) Banga S; Gao P; Shen X; Fiscus V; Zong WX; Chen L; Luo ZQ (2007). Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc Natl Acad Sci U S A. 104(12):5121-6. [PudMed:17360363] experimental
(53) Shen X; Banga S; Liu Y; Xu L; Gao P; Shamovsky I; Nudler E; Luo ZQ (2009). Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response. Cell Microbiol. 11(6):911-26. [PudMed:19386084] experimental
(54) Qiu J et al. (2017). A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination. Cell Res. 27(7):865-881. [PudMed:28497808] experimental
(55) Bhogaraju S et al. (2019). Inhibition of bacterial ubiquitin ligases by SidJ-calmodulin catalysed glutamylation. Nature. 572(7769):382-386. [PudMed:31330532] experimental
(56) Xu L; Shen X; Bryan A; Banga S; Swanson MS; Luo ZQ (2010). Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog. 6(3):e1000822. [PudMed:20333253] experimental
(57) Machner MP; Isberg RR (2006). Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell. 11(1):47-56. [PudMed:16824952] experimental
(58) O'Brien KM et al. (2015). The Legionella pneumophila effector protein, LegC7, alters yeast endosomal trafficking. PLoS One. 10(2):e0116824. [PudMed:25643265] experimental
(59) Toulabi L et al. (2013). Identification and structural characterization of a Legionella phosphoinositide phosphatase. J Biol Chem. 288(34):24518-27. [PudMed:23843460] experimental
(60) Franco IS et al. (2012). The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog. 8(2):e1002546. [PudMed:22383880] experimental
(61) Gaspar AH et al. (2014). VipD is a Rab5-activated phospholipase A1 that protects Legionella pneumophila from endosomal fusion. Proc Natl Acad Sci U S A. 111(12):4560-5. [PudMed:24616501] experimental
(62) Ku B et al. (2012). VipD of Legionella pneumophila targets activated Rab5 and Rab22 to interfere with endosomal trafficking in macrophages. PLoS Pathog. 8(12):e1003082. [PudMed:23271971] experimental
(63) Prevost MS et al. (2017). The Legionella effector WipB is a translocated Ser/Thr phosphatase that targets the host lysosomal nutrient sensing machinery. Sci Rep. 7(1):9450. [PudMed:28842705] experimental
(64) de Felipe KS et al. (2008). Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog. 4(8):e1000117. [PudMed:18670632] experimental
(65) de Felipe KS et al. (2008). Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog. 4(8):e1000117. [PudMed:18670632] experimental
(1) Gomez-Valero L; Rusniok C; Cazalet C; Buchrieser C (2011). Comparative and functional genomics of legionella identified eukaryotic like proteins as key players in host-pathogen interactions. Front Microbiol. 2:208. [PudMed:22059087] in_silico
(2) Hayashi T; Nakamichi M; Naitou H; Ohashi N; Imai Y; Miyake M (2010). Proteomic analysis of growth phase-dependent expression of Legionella pneumophila proteins which involves regulation of bacterial virulence traits. PLoS One. 5(7):e11718. [PudMed:20661449] experimental
(3) Xu L; Shen X; Bryan A; Banga S; Swanson MS; Luo ZQ (2010). Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog. 6(3):e1000822. [PudMed:20333253] experimental
(4) Dalebroux ZD; Yagi BF; Sahr T; Buchrieser C; Swanson MS (2010). Distinct roles of ppGpp and DksA in Legionella pneumophila differentiation. Mol Microbiol. 76(1):200-19. [PudMed:20199605] experimental
(5) Zhu Y; Hu L; Zhou Y; Yao Q; Liu L; Shao F (2010). Structural mechanism of host Rab1 activation by the bifunctional Legionella type IV effector SidM/DrrA. Proc Natl Acad Sci U S A. 107(10):4699-704. [PudMed:20176951] experimental
(6) Silveira TN; Zamboni DS (2010). Pore formation triggered by Legionella spp. is an Nlrc4 inflammasome-dependent host cell response that precedes pyroptosis. Infect Immun. 78(3):1403-13. [PudMed:20048047] experimental
(7) Whitfield NN; Byrne BG; Swanson MS (2010). Mouse macrophages are permissive to motile Legionella species that fail to trigger pyroptosis. Infect Immun. 78(1):423-32. [PudMed:19841075] experimental
(8) Ge J; Xu H; Li T; Zhou Y; Zhang Z; Li S; Liu L; Shao F (2009). A Legionella type IV effector activates the NF-kappaB pathway by phosphorylating the IkappaB family of inhibitors. Proc Natl Acad Sci U S A. 106(33):13725-30. [PudMed:19666608] experimental
(9) Zhang C; Kuspa A (2009). Transcriptional down-regulation and rRNA cleavage in Dictyostelium discoideum mitochondria during Legionella pneumophila infection. PLoS One. 4(5):e5706. [PudMed:19492077] experimental
(10) Rasis M; Segal G (2009). The LetA-RsmYZ-CsrA regulatory cascade, together with RpoS and PmrA, post-transcriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectors. Mol Microbiol. 72(4):995-1010. [PudMed:19400807] experimental
(11) Vardarova K; Scharf S; Lang F; Schmeck B; Opitz B; Eitel J; Hocke AC; Slevogt H; Flieger A; Hippenstiel S; Suttorp N; N'guessan PD (2009). PKC(alpha) and PKC(epsilon) differentially regulate Legionella pneumophila-induced GM-CSF. Eur Respir J. 34(5):1171-9. [PudMed:19324950] experimental
(12) Ninio S; Celli J; Roy CR (2009). A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles. PLoS Pathog. 5(1):e1000278. [PudMed:19165328] experimental
(13) Brombacher E; Urwyler S; Ragaz C; Weber SS; Kami K; Overduin M; Hilbi H (2009). Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J Biol Chem. 284(8):4846-56. [PudMed:19095644] experimental
(14) Shin S; Case CL; Archer KA; Nogueira CV; Kobayashi KS; Flavell RA; Roy CR; Zamboni DS (2008). Type IV secretion-dependent activation of host MAP kinases induces an increased proinflammatory cytokine response to Legionella pneumophila. PLoS Pathog. 4(11):e1000220. [PudMed:19043549] experimental
(15) Weber SS; Ragaz C; Hilbi H (2009). The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. Cell Microbiol. 11(3):442-60. [PudMed:19021631] experimental
(16) Altman E; Segal G (2008). The response regulator CpxR directly regulates expression of several Legionella pneumophila icm/dot components as well as new translocated substrates. J Bacteriol. 190(6):1985-96. [PudMed:18192394] experimental in_silico
(17) Cambronne ED; Roy CR (2007). The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation. PLoS Pathog. 3(12):e188. [PudMed:18069892] experimental
(18) Molmeret M; Santic' M; Asare R; Carabeo RA; Abu Kwaik Y (2007). Rapid escape of the dot/icm mutants of Legionella pneumophila into the cytosol of mammalian and protozoan cells. Infect Immun. 75(7):3290-304. [PudMed:17438033] experimental
(19) Chen J; Reyes M; Clarke M; Shuman HA (2007). Host cell-dependent secretion and translocation of the LepA and LepB effectors of Legionella pneumophila. Cell Microbiol. 9(7):1660-71. [PudMed:17371403] experimental
(20) Banga S; Gao P; Shen X; Fiscus V; Zong WX; Chen L; Luo ZQ (2007). Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc Natl Acad Sci U S A. 104(12):5121-6. [PudMed:17360363] experimental
(21) Zusman T; Aloni G; Halperin E; Kotzer H; Degtyar E; Feldman M; Segal G (2007). The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii. Mol Microbiol. 63(5):1508-23. [PudMed:17302824] experimental
(22) Vincent CD; Friedman JR; Jeong KC; Buford EC; Miller JL; Vogel JP (2006). Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol Microbiol. 62(5):1278-91. [PudMed:17040490] experimental
(23) N'Guessan PD; Etouem MO; Schmeck B; Hocke AC; Scharf S; Vardarova K; Opitz B; Flieger A; Suttorp N; Hippenstiel S (2007). Legionella pneumophila-induced PKCalpha-, MAPK-, and NF-kappaB-dependent COX-2 expression in human lung epithelium. Am J Physiol Lung Cell Mol Physiol. 292(1):L267-77. [PudMed:17012371] experimental
(24) Opitz B; Vinzing M; van Laak V; Schmeck B; Heine G; Gunther S; Preissner R; Slevogt H; N'Guessan PD; Eitel J; Goldmann T; Flieger A; Suttorp N; Hippenstiel S (2006). Legionella pneumophila induces IFNbeta in lung epithelial cells via IPS-1 and IRF3, which also control bacterial replication. J Biol Chem. 281(47):36173-9. [PudMed:16984921] experimental
(25) Amer A; Franchi L; Kanneganti TD; Body-Malapel M; Ozoren N; Brady G; Meshinchi S; Jagirdar R; Gewirtz A; Akira S; Nunez G (2006). Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem. 281(46):35217-23. [PudMed:16984919] experimental
(26) Losick VP; Isberg RR (2006). NF-kappaB translocation prevents host cell death after low-dose challenge by Legionella pneumophila. J Exp Med. 203(9):2177-89. [PudMed:16940169] experimental
(27) Murata T; Delprato A; Ingmundson A; Toomre DK; Lambright DG; Roy CR (2006). The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol. 8(9):971-7. [PudMed:16906144] experimental
(28) Machner MP; Isberg RR (2006). Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell. 11(1):47-56. [PudMed:16824952] experimental
(29) Vincent CD; Vogel JP (2006). The Legionella pneumophila IcmS-LvgA protein complex is important for Dot/Icm-dependent intracellular growth. Mol Microbiol. 61(3):596-613. [PudMed:16803597] experimental
(30) VanRheenen SM; Luo ZQ; O'Connor T; Isberg RR (2006). Members of a Legionella pneumophila family of proteins with ExoU (phospholipase A) active sites are translocated to target cells. Infect Immun. 74(6):3597-606. [PudMed:16714592] experimental
(31) Fernandez-Moreira E; Helbig JH; Swanson MS (2006). Membrane vesicles shed by Legionella pneumophila inhibit fusion of phagosomes with lysosomes. Infect Immun. 74(6):3285-95. [PudMed:16714556] experimental
(32) Kagan JC; Murata T; Roy CR (2005). Analysis of Rab1 recruitment to vacuoles containing Legionella pneumophila. Methods Enzymol. 403:71-81. [PudMed:16473578] experimental
(33) Shi C; Forsbach-Birk V; Marre R; McNealy TL (2006). The Legionella pneumophila global regulatory protein LetA affects DotA and Mip. Int J Med Microbiol. 296(1):15-24. [PudMed:16423685] experimental
(34) de Felipe KS; Pampou S; Jovanovic OS; Pericone CD; Ye SF; Kalachikov S; Shuman HA (2005). Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J Bacteriol. 187(22):7716-26. [PudMed:16267296] in_silico
(35) Yerushalmi G; Zusman T; Segal G (2005). Additive effect on intracellular growth by Legionella pneumophila Icm/Dot proteins containing a lipobox motif. Infect Immun. 73(11):7578-87. [PudMed:16239561] experimental
(36) Feldman M; Zusman T; Hagag S; Segal G (2005). Coevolution between nonhomologous but functionally similar proteins and their conserved partners in the Legionella pathogenesis system. Proc Natl Acad Sci U S A. 102(34):12206-11. [PudMed:16091472] experimental
(37) Sauer JD; Shannon JG; Howe D; Hayes SF; Swanson MS; Heinzen RA (2005). Specificity of Legionella pneumophila and Coxiella burnetii vacuoles and versatility of Legionella pneumophila revealed by coinfection. Infect Immun. 73(8):4494-504. [PudMed:16040960] experimental
(38) Derre I; Isberg RR (2005). LidA, a translocated substrate of the Legionella pneumophila type IV secretion system, interferes with the early secretory pathway. Infect Immun. 73(7):4370-80. [PudMed:15972532] experimental
(39) Sexton JA; Yeo HJ; Vogel JP (2005). Genetic analysis of the Legionella pneumophila DotB ATPase reveals a role in type IV secretion system protein export. Mol Microbiol. 57(1):70-84. [PudMed:15948950] experimental
(40) Campodonico EM; Chesnel L; Roy CR (2005). A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the Legionella pneumophila Dot/Icm system. Mol Microbiol. 56(4):918-33. [PudMed:15853880] experimental
(41) Buscher BA; Conover GM; Miller JL; Vogel SA; Meyers SN; Isberg RR; Vogel JP (2005). The DotL protein, a member of the TraG-coupling protein family, is essential for Viability of Legionella pneumophila strain Lp02. J Bacteriol. 187(9):2927-38. [PudMed:15838018] experimental
(42) Bardill JP; Miller JL; Vogel JP (2005). IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol Microbiol. 56(1):90-103. [PudMed:15773981] experimental
(43) Albers U; Reus K; Shuman HA; Hilbi H (2005). The amoebae plate test implicates a paralogue of lpxB in the interaction of Legionella pneumophila with Acanthamoeba castellanii. Microbiology. 151(Pt 1):167-82. [PudMed:15632436] experimental
(44) Sexton JA; Miller JL; Yoneda A; Kehl-Fie TE; Vogel JP (2004). Legionella pneumophila DotU and IcmF are required for stability of the Dot/Icm complex. Infect Immun. 72(10):5983-92. [PudMed:15385502] experimental
(45) VanRheenen SM; Dumenil G; Isberg RR (2004). IcmF and DotU are required for optimal effector translocation and trafficking of the Legionella pneumophila vacuole. Infect Immun. 72(10):5972-82. [PudMed:15385501] experimental
(46) Zusman T; Feldman M; Halperin E; Segal G (2004). Characterization of the icmH and icmF genes required for Legionella pneumophila intracellular growth, genes that are present in many bacteria associated with eukaryotic cells. Infect Immun. 72(6):3398-409. [PudMed:15155646] experimental
(47) Sexton JA; Pinkner JS; Roth R; Heuser JE; Hultgren SJ; Vogel JP (2004). The Legionella pneumophila PilT homologue DotB exhibits ATPase activity that is critical for intracellular growth. J Bacteriol. 186(6):1658-66. [PudMed:14996796] experimental
(48) Chen J; de Felipe KS; Clarke M; Lu H; Anderson OR; Segal G; Shuman HA (2004). Legionella effectors that promote nonlytic release from protozoa. Science. 303(5662):1358-61. [PudMed:14988561] experimental
(49) Bandyopadhyay P; Byrne B; Chan Y; Swanson MS; Steinman HM (2003). Legionella pneumophila catalase-peroxidases are required for proper trafficking and growth in primary macrophages. Infect Immun. 71(8):4526-35. [PudMed:12874332] experimental
(50) Brassinga AK; Hiltz MF; Sisson GR; Morash MG; Hill N; Garduno E; Edelstein PH; Garduno RA; Hoffman PS (2003). A 65-kilobase pathogenicity island is unique to Philadelphia-1 strains of Legionella pneumophila. J Bacteriol. 185(15):4630-7. [PudMed:12867476] in_silico
(51) Dumenil G; Isberg RR (2001). The Legionella pneumophila IcmR protein exhibits chaperone activity for IcmQ by preventing its participation in high-molecular-weight complexes. Mol Microbiol. 40(5):1113-27. [PudMed:11401716] experimental
(52) Segal G; Russo JJ; Shuman HA (1999). Relationships between a new type IV secretion system and the icm/dot virulence system of Legionella pneumophila. Mol Microbiol. 34(4):799-809. [PudMed:10564519] experimental
 
experimental This literature contains experimental investigation
in_silico This literature contains bioinformatics investigation