SecReT4
SecReT4 contains data from 1565 references related to type IV secretion systems (T4SSs). Last Update: Sep 30, 2019

Categories (Literatures contain following contents are categorized)
reviews experimental studies bioinformatics genome sequencing T4SS component T4SS effectors
conjugation DNA uptake and release effector translocation structural study protein interaction other
all
Search
     

Number of references found for the 'effector' category : 570

References
(1) Zhao H, Xu L, Xu Z, Ding Y, Yu H, Zhang Y, Wu Y, Li B, Ji X (2019). Investigation on the role of gene hp0788 in Helicobacter pylori in infecting gastric epithelial cells. Microb Pathog. 137:103739. [PudMed:31513896]
(2) Bayer-Santos E, Cenens W, Matsuyama BY, Oka GU, Di Sessa G, Mininel IDV, Alves TL, Farah CS (2019). The opportunistic pathogen Stenotrophomonas maltophilia utilizes a type IV secretion system for interbacterial killing. PLoS Pathog. 15(9):e1007651. [PudMed:31513674]
(3) Wroblewski LE, Choi E, Petersen C, Delgado AG, Piazuelo MB, Romero-Gallo J, Lantz TL, Zavros Y, Coffey RJ, Goldenring JR, Zemper AE, Peek RM Jr (2019). Targeted mobilization of Lrig1+ gastric epithelial stem cell populations by a carcinogenic Helicobacter pylori type IV secretion system. Proc Natl Acad Sci U S A. 116(39):19652-19658. [PudMed:31488717]
(4) Chmiela M, Kupcinskas J (2019). Review: Pathogenesis of Helicobacter pylori infection. Helicobacter. 24 Suppl 1:e12638. [PudMed:31486234]
(5) Zhi F, Zhou D, Bai F, Li J, Xiang C, Zhang G, Jin Y, Wang A (2019). VceC Mediated IRE1 Pathway and Inhibited CHOP-induced Apoptosis to Support Brucella Replication in Goat Trophoblast Cells. Int J Mol Sci. 20(17). pii: E4104. [PudMed:31443507]
(6) Sen R, Tagore S, De RK (2019). Cluster Quality based Non-Reductional (CQNR) oversampling technique and effector protein predictor based on 3D structure (EPP3D) of proteins. Comput Biol Med. 112:103374. [PudMed:31419629]
(7) Pachathundikandi SK, Gutiérrez-Escobar AJ, Tegtmeyer N (2019). Tailor-Made Detection of Individual Phosphorylated and Non-Phosphorylated EPIYA-Motifs of Helicobacter pylori Oncoprotein CagA. Cancers (Basel). 11(8). pii: E1163. [PudMed:31412675]
(8) Demars A, Lison A, Machelart A, Van Vyve M, Potemberg G, Vanderwinden JM, De Bolle X, Letesson JJ, Muraille E (2019). Route of Infection Strongly Impacts the Host-Pathogen Relationship. Front Immunol. 10:1589. [PudMed:31354728]
(9) Liu X, Shin S (2019). Viewing Legionella pneumophila Pathogenesis through an Immunological Lens. J Mol Biol. pii: S0022-2836(19)30472-3. [PudMed:31351897]
(10) Byndloss MX, Tsai AY, Walker GT, Miller CN, Young BM, English BC, Seyffert N, Kerrinnes T, de Jong MF, Atluri VL, Winter MG, Celli J, Tsolis RM (2019). Brucella abortus Infection of Placental Trophoblasts Triggers Endoplasmic Reticulum Stress-Mediated Cell Death and Fetal Loss via Type IV Secretion System-Dependent Activation of CHOP. MBio. 10(4). pii: e01538-19. [PudMed:31337727]
(11) Bhogaraju S, Bonn F, Mukherjee R, Adams M, Pfleiderer MM, Galej WP, Matkovic V, Lopez-Mosqueda J, Kalayil S, Shin D, Dikic I (2019). Inhibition of bacterial ubiquitin ligases by SidJ-calmodulin catalysed glutamylation. Nature. 572(7769):382-386. [PudMed:31330532]
(12) Gan N, Zhen X, Liu Y, Xu X, He C, Qiu J, Liu Y, Fujimoto GM, Nakayasu ES, Zhou B, Zhao L, Puvar K, Das C, Ouyang S, Luo ZQ (2019). Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase. Nature. 572(7769):387-391. [PudMed:31330531]
(13) Esna Ashari Z, Brayton KA, Broschat SL (2019). Prediction of T4SS Effector Proteins for Anaplasma phagocytophilum Using OPT4e, A New Software Tool. Front Microbiol. 10:1391. [PudMed:31293540]
(14) Tsai AY, English BC, Tsolis RM (2019). Hostile Takeover: Hijacking of Endoplasmic Reticulum Function by T4SS and T3SS Effectors Creates a Niche for Intracellular Pathogens. Microbiol Spectr. 7(3). [PudMed:31198132]
(15) Buß M, Tegtmeyer N, Schnieder J, Dong X, Li J, Springer TA, Backert S, Niemann HH (2019). Specific high affinity interaction of Helicobacter pylori CagL with integrin αV β6 promotes type IV secretion of CagA into human cells. FEBS J. . [PudMed:31197920]
(16) Kumari R, Shariq M, Sharma S, Kumar A, Mukhopadhyay G (2019). CagW, a VirB6 homologue interacts with Cag-type IV secretion system substrate CagA in Helicobacter pylori. Biochem Biophys Res Commun. 515(4):712-718. [PudMed:31182283]
(17) Sgro GG, Oka GU, Souza DP, Cenens W, Bayer-Santos E, Matsuyama BY, Bueno NF, Dos Santos TR, Alvarez-Martinez CE, Salinas RK, Farah CS (2019). Bacteria-Killing Type IV Secretion Systems. Front Microbiol. 10:1078. [PudMed:31164878]
(18) Wagner A, Tittes C, Dehio C (2019). Versatility of the BID Domain: Conserved Function as Type-IV-Secretion-Signal and Secondarily Evolved Effector Functions Within Bartonella-Infected Host Cells. Front Microbiol. 10:921. [PudMed:31130928]
(19) Knorr J, Ricci V, Hatakeyama M, Backert S (2019). Classification of Helicobacter pylori Virulence Factors: Is CagA a Toxin or Not. Trends Microbiol. 27(9):731-738. [PudMed:31130493]
(20) Wan M, Wang X, Huang C, Xu D, Wang Z, Zhou Y, Zhu Y (2019). A bacterial effector deubiquitinase specifically hydrolyses linear ubiquitin chains to inhibit host inflammatory signalling. Nat Microbiol. 10.1038. [PudMed:31110362]
(21) Ngwaga T, Hydock AJ, Ganesan S, Shames SR (2019). Potentiation of Cytokine-Mediated Restriction of Legionella Intracellular Replication by a Dot/Icm-Translocated Effector. J Bacteriol. 201(14). pii: e00755-18. [PudMed:31036725]
(22) Arya T, Oudouhou F, Casu B, Bessette B, Sygusch J, Baron C (2019). Fragment-based screening identifies inhibitors of ATPase activity and of hexamer formation of Cagα from the Helicobacter pylori type IV secretion system. Sci Rep. 9(1):6474. [PudMed:31019200]
(23) Nimrod Nachmias, Tal Zusman, Gil Segal (2019). Study of Legionella Effector Domains Revealed Novel and Prevalent Phosphatidylinositol 3-Phosphate Binding Domains. Infect Immun. 87(6). pii: e00153-19. [PudMed:30962397]
(24) Noroy C, Lefrançois T, Meyer DF (2019). Searching algorithm for Type IV effector proteins (S4TE) 2.0: Improved tools for Type IV effector prediction, analysis and comparison in proteobacteria. PLoS Comput Biol. 15(3):e1006847. [PudMed:30908487]
(25) Zhu J, He M, Xu W, Li Y, Huang R, Wu S, Niu H. (2019). Development of TEM-1 β-lactamase based protein translocation assay for identification of Anaplasma phagocytophilum type IV secretion system effector proteins. Scientific Reports. 9(1):4235. [PudMed:30862835]
(26) Celli J (2019). The Intracellular Life Cycle of Brucella spp. Microbiol Spectr. 7(2). [PudMed:30848234]
(27) Zhang J, Li M, Li Z, Shi J, Zhang Y, Deng X, Liu L, Wang Z, Qi Y, Zhang H (2019). Deletion of the Type IV Secretion System Effector VceA Promotes Autophagy and Inhibits Apoptosis in Brucella-Infected Human Trophoblast Cells. Curr Microbiol. 76(4):510-519. [PudMed:30805699]
(28) Pike CM, Boyer-Andersen R, Kinch LN, Caplan JL, Neunuebel MR (2019). The Legionella effector RavD binds phosphatidylinositol-3-phosphate and helps suppress endolysosomal maturation of the Legionella-containing vacuole. J Biol Chem. 294(16):6405-6415. [PudMed:30733336]
(29) Esna Ashari Z, Brayton KA, Broschat SL (2019). Using an optimal set of features with a machine learning-based approach to predict effector proteins for Legionella pneumophila. PLoS One. 14(1):e0202312. [PudMed:30682021]
(30) Gomez-Valero L, Rusniok C, Carson D, Mondino S, Pérez-Cobas AE, Rolando M, Pasricha S, Reuter S, Demirtas J, Crumbach J, Descorps-Declere S, Hartland EL, Jarraud S, Dougan G, Schroeder GN, Frankel G, Buchrieser C (2019). More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells. Proc Natl Acad Sci U S A. 116(6):2265-2273. [PudMed:30659146]
(31) Hayek I, Berens C, Lührmann A (2019). Modulation of host cell metabolism by T4SS-encoding intracellular pathogens. Curr Opin Microbiol. 47:59-65.. [PudMed:30640035]
(32) Levanova N, Mattheis C, Carson D, To KN, Jank T, Frankel G, Aktories K, Schroeder GN (2019). The Legionella effector LtpM is a new type of phosphoinositide-activated glucosyltransferase. J Biol Chem. 294(8):2862-2879. [PudMed:30573678]
(33) Wang C, Fu J, Wang M, Cai Y, Hua X, Du Y, Yang Z, Li Y, Wang Z, Sheng H, Yin N, Liu X, Koehler JE, Yuan C (2019). Bartonella quintana type IV secretion effector BepE-induced selective autophagy by conjugation with K63 polyubiquitin chain. Cell Microbiol. 21(4):e12984. [PudMed:30463105]
(34) Gan N, Nakayasu ES, Hollenbeck PJ, Luo ZQ (2019). Legionella pneumophila inhibits immune signalling via MavC-mediated transglutaminase-induced ubiquitination of UBE2N. Nat Microbiol. 4(1):134-143. [PudMed:30420781]
(35) Wang J, Yang B, An Y, Marquez-Lago T, Leier A, Wilksch J, Hong Q, Zhang Y, Hayashida M, Akutsu T, Webb GI, Strugnell RA, Song J, Lithgow T (2019). Systematic analysis and prediction of type IV secreted effector proteins by machine learning approaches. Brief Bioinform. 20(3):931-951. [PudMed:29186295]
(36) Rikihisa Y (2019). Subversion of RAB5-regulated autophagy by the intracellular pathogen Ehrlichia chaffeensis. Small GTPases. 10(5):343-349. [PudMed:28650718]
(37) Xiong Y, Wang Q, Yang J, Zhu X, Wei DQ (2018). PredT4SE-Stack: Prediction of Bacterial Type IV Secreted Effectors From Protein Sequences Using a Stacked Ensemble Method. Front Microbiol. 9:2571.. [PudMed:30416498]
(38) Zhao Q, Busch B, Jiménez-Soto LF, Ishikawa-Ankerhold H, Massberg S, Terradot L, Fischer W, Haas R (2018). Integrin but not CEACAM receptors are dispensable for Helicobacter pylori CagA translocation. PLoS Pathog. 14(10):e1007359. [PudMed:30365569]
(39) Carpinone EM, Li Z, Mills MK, Foltz C, Brannon ER, Carlow CKS, Starai VJ (2018). Identification of putative effectors of the Type IV secretion system from the Wolbachia endosymbiont of Brugia malayi. PLoS One. 13(9):e0204736. [PudMed:30261054]
(40) Dyer V, Brüggemann H, Sörensen M, Kühl AA, Hoffman K, Brinkmann V, Reines MDM, Zimmerman S, Meyer TF, Koch M (2018). Genomic features of the Helicobacter pylori strain PMSS1 and its virulence attributes as deduced from its in vivo colonisation patterns. Mol Microbiol. 110(5):761-776. [PudMed:30230643]
(41) Yan Q, Lin M, Huang W, Teymournejad O, Johnson JM, Hays FA, Liang Z, Li G, Rikihisa Y (2018). Ehrlichia type IV secretion system effector Etf-2 binds to active RAB5 and delays endosome maturation. Proc Natl Acad Sci U S A. 115(38):E8977-E8986. [PudMed:30181274]
(42) Lehman SS, Noriea NF, Aistleitner K, Clark TR, Dooley CA, Nair V, Kaur SJ, Rahman MS, Gillespie JJ, Azad AF, Hackstadt T (2018). The Rickettsial Ankyrin Repeat Protein 2 Is a Type IV Secreted Effector That Associates with the Endoplasmic Reticulum. MBio. 9(3):e00975-18. [PudMed:29946049]
(43) Esna Ashari Z, Dasgupta N, Brayton KA, Broschat SL (2018). An optimal set of features for predicting type IV secretion system effector proteins for a subset of species based on a multi-level feature selection approach. PLoS One. 13(5):e0197041. [PudMed:29742157]
(44) Valleau D, Quaile AT, Cui H, Xu X, Evdokimova E, Chang C, Cuff ME, Urbanus ML, Houliston S, Arrowsmith CH, Ensminger AW, Savchenko A (2018). Discovery of Ubiquitin Deamidases in the Pathogenic Arsenal of Legionella pneumophila. Cell Rep. 23(2):568-583. [PudMed:29642013]
(45) Zalguizuri A, Caetano-Anollés G, Lepek VC (2018). Phylogenetic profiling, an untapped resource for the prediction of secreted proteins and its complementation with sequence-based classifiers in bacterial type III, IV and VI secretion systems. Brief Bioinform. . [PudMed:29394318]
(46) Schroeder GN (2018). The Toolbox for Uncovering the Functions of Legionella Dot/Icm Type IVb Secretion System Effectors: Current State and Future Directions. Front Cell Infect Microbiol. 7:528. [PudMed:29354599]
(47) Crabill E, Schofield WB, Newton HJ, Goodman AL, Roy CR (2018). Dot/Icm-Translocated Proteins Important for Biogenesis of the Coxiella burnetii-Containing Vacuole Identified by Screening of an Effector Mutant Sublibrary. Infect Immun. 86(4):e00758-17. [PudMed:29339460]
(48) Pechstein J, Schulze-Luehrmann J, Lührmann A (2018). Coxiella burnetii as a useful tool to investigate bacteria-friendly host cell compartments. Int J Med Microbiol. 308(1):77-83. [PudMed:28935173]
(49) Steiner B, Weber S, Hilbi H (2018). Formation of the Legionella-containing vacuole: phosphoinositide conversion, GTPase modulation and ER dynamics. Int J Med Microbiol. 308(1):49-57. [PudMed:28865995]
(50) An Y, Wang J, Li C, Leier A, Marquez-Lago T, Wilksch J, Zhang Y, Webb GI, Song J, Lithgow T. (2018). Comprehensive assessment and performance improvement of effector protein predictors for bacterial secretion systems III, IV and VI. Brief Bioinform. 19(1):148-161. [PudMed:27777222]
(51) Christie PJ, Gomez Valero L, Buchrieser C (2017). Biological Diversity and Evolution of Type IV Secretion Systems. Curr Top Microbiol Immunol. 413:1-30. [PudMed:29536353]
(52) Qiu J, Luo ZQ (2017). Hijacking of the Host Ubiquitin Network by Legionella pneumophila. Front Cell Infect Microbiol. 7:487. [PudMed:29376029]
(53) Ringel PD, Hu D, Basler M (2017). The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer. Cell Rep. 21(13):3927-3940. [PudMed:29281838]
(54) Xu J, Xu D, Wan M, Yin L, Wang X, Wu L, Liu Y, Liu X, Zhou Y, Zhu Y (2017). Structural insights into the roles of the IcmS-IcmW complex in the type IVb secretion system of Legionella pneumophila. Proc Natl Acad Sci U S A. 114(51):13543-13548. [PudMed:29203674]
(55) Wallqvist A, Wang H, Zavaljevski N, Memišević V, Kwon K, Pieper R, Rajagopala SV, Reifman J (2017). Mechanisms of action of Coxiella burnetii effectors inferred from host-pathogen protein interactions. PLoS One. 12(11):e0188071. [PudMed:29176882]
(56) De Leon JA, Qiu J, Nicolai CJ, Counihan JL, Barry KC, Xu L, Lawrence RE, Castellano BM, Zoncu R, Nomura DK, Luo ZQ, Vance RE (2017). Positive and Negative Regulation of the Master Metabolic Regulator mTORC1 by Two Families of Legionella pneumophila Effectors. Cell Rep. 21(8):2031-2038. [PudMed:29166595]
(57) Bärlocher K, Hutter CAJ, Swart AL, Steiner B, Welin A, Hohl M, Letourneur F, Seeger MA, Hilbi H (2017). Structural insights into Legionella RidL-Vps29 retromer subunit interaction reveal displacement of the regulator TBC1D5. Nat Commun. 8(1):1543. [PudMed:29146912]
(58) Shames SR, Liu L, Havey JC, Schofield WB, Goodman AL, Roy CR (2017). Multiple Legionella pneumophila effector virulence phenotypes revealed through high-throughput analysis of targeted mutant libraries. Proc Natl Acad Sci U S A. 114(48):E10446-E10454. [PudMed:29133401]
(59) Wang Y, Guo Y, Pu X, Li M (2017). Effective prediction of bacterial type IV secreted effectors by combined features of both C-termini and N-termini. J Comput Aided Mol Des. 31(11):1029-1038. [PudMed:29127583]
(60) Harms A, Liesch M, Körner J, Québatte M, Engel P, Dehio C (2017). A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella. PLoS Genet. 13(10):e1007077. [PudMed:29073136]
(61) Koelblen T, Bergé C, Cherrier MV, Brillet K, Jimenez-Soto L, Ballut L, Takagi J, Montserret R, Rousselle P, Fischer W, Haas R, Fronzes R, Terradot L (2017). Molecular dissection of protein-protein interactions between integrin α5β1 and the Helicobacter pylori Cag type IV secretion system.. FEBS J. 284(23):4143-4157. [PudMed:29055076]
(62) Horridge DN, Begley AA, Kim J, Aravindan N, Fan K, Forsyth MH (2017). Outer inflammatory protein a (OipA) of Helicobacter pylori is regulated by host cell contact and mediates CagA translocation and interleukin-8 response only in the presence of a functional cag pathogenicity island type IV secretion system. Pathog Dis. 75(8). [PudMed:29040466]
(63) Arriola Benitez PC, Pesce Viglietti AI, Herrmann CK, Dennis VA, Comerci DJ, Giambartolomei GH, Delpino MV (2017). Brucella abortus Promotes a Fibrotic Phenotype in Hepatic Stellate Cells, with Concomitant Activation of the Autophagy Pathway. Infect Immun. 86(1). pii: e00522-17. [PudMed:28993461]
(64) Weigele BA, Orchard RC, Jimenez A, Cox GW, Alto NM (2017). A systematic exploration of the interactions between bacterial effector proteins and host cell membranes. Nat Commun. 8(1):532. [PudMed:28912547]
(65) Escoll P, Song OR, Viana F, Steiner B, Lagache T, Olivo-Marin JC, Impens F, Brodin P, Hilbi H, Buchrieser C (2017). Legionella pneumophila Modulates Mitochondrial Dynamics to Trigger Metabolic Repurposing of Infected Macrophages. Cell Host Microbe. 22(3):302-316.e7. [PudMed:28867389]
(66) Rice DW, Sheehan KB, Newton ILG (2017). Large-Scale Identification of Wolbachia pipientis Effectors. Genome Biol Evol. 9(7):1925-1937. [PudMed:28854601]
(67) Miller CN, Smith EP, Cundiff JA, Knodler LA, Bailey Blackburn J, Lupashin V, Celli J (2017). A Brucella Type IV Effector Targets the COG Tethering Complex to Remodel Host Secretory Traffic and Promote Intracellular Replication. Cell Host Microbe. 22(3):317-329.e7. [PudMed:28844886]
(68) Prevost MS, Pinotsis N, Dumoux M, Hayward RD, Waksman G (2017). The Legionella effector WipB is a translocated Ser/Thr phosphatase that targets the host lysosomal nutrient sensing machinery. Sci Rep. 7(1):9450. [PudMed:28842705]
(69) Cortés M, Sánchez P, Ruiz P, Haro R, Sáez J, Sánchez F, Hernández M, Oliver C, Yáñez AJ (2017). In vitro expression of Sec-dependent pathway and type 4B secretion system in Piscirickettsia salmonis. Microb Pathog. 110:586-593. [PudMed:28789875]
(70) Tohidpour A, Gorrell RJ, Roujeinikova A, Kwok T (2017). The Middle Fragment of Helicobacter pylori CagA Induces Actin Rearrangement and Triggers Its Own Uptake into Gastric Epithelial Cells. Toxins (Basel). 9(8). pii: E237. [PudMed:28788072]
(71) Kwak MJ, Kim JD, Kim H, Kim C, Bowman JW, Kim S, Joo K, Lee J, Jin KS, Kim YG, Lee NK, Jung JU, Oh BH (2017). Architecture of the type IV coupling protein complex of Legionella pneumophila. Nat Microbiol. 2:17114. [PudMed:28714967]
(72) Qiu J, Luo ZQ (2017). Legionella and Coxiella effectors: strength in diversity and activity. Nat Rev Microbiol. 15(10):591-605. [PudMed:28713154]
(73) Sharma P, Teymournejad O, Rikihisa Y (2017). Peptide Nucleic Acid Knockdown and Intra-host Cell Complementation of Ehrlichia Type IV Secretion System Effector. Front Cell Infect Microbiol. 7:228. [PudMed:28638803]
(74) Wang F, Qu N, Peng J, Yue C, Yuan L, Yuan Y (2017). CagA promotes proliferation and inhibits apoptosis of GES-1 cells by upregulating TRAF1/4-1BB. Mol Med Rep. 16(2):1262-1268. [PudMed:28627614]
(75) Tegtmeyer N, Neddermann M, Asche CI, Backert S (2017). Subversion of host kinases: a key network in cellular signaling hijacked by Helicobacter pylori CagA. Mol Microbiol. 105(3):358-372. [PudMed:28508421]
(76) Qiu J, Yu K, Fei X, Liu Y, Nakayasu ES, Piehowski PD, Shaw JB, Puvar K, Das C, Liu X, Luo ZQ (2017). A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination. Cell Res. 27(7):865-881. [PudMed:28497808]
(77) Hatakeyama M (2017). Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Proc Jpn Acad Ser B Phys Biol Sci. 93(4):196-219. [PudMed:28413197]
(78) Pinotsis N, Waksman G (2017). Structure of the WipA protein reveals a novel tyrosine protein phosphatase effector from Legionella pneumophila. J Biol Chem. 292(22):9240-9251. [PudMed:28389563]
(79) Backert S, Tegtmeyer N (2017). Type IV Secretion and Signal Transduction of Helicobacter pylori CagA through Interactions with Host Cell Receptors. Toxins (Basel). 9(4). pii: E115. [PudMed:28338646]
(80) Fielden LF, Moffatt JH, Kang Y, Baker MJ, Khoo CA, Roy CR, Stojanovski D, Newton HJ (2017). A Farnesylated Coxiella burnetii Effector Forms a Multimeric Complex at the Mitochondrial Outer Membrane during Infection. Infect Immun. 85(5):e01046-16. [PudMed:28242621]
(81) Noroy C, Meyer DF (2017). Comparative Genomics of the Zoonotic Pathogen Ehrlichia chaffeensis Reveals Candidate Type IV Effectors and Putative Host Cell Targets. Front Cell Infect Microbiol. 6:204. [PudMed:28180111]
(82) Liu Y, Zhu W, Tan Y, Nakayasu ES, Staiger CJ, Luo ZQ (2017). A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin. PLoS Pathog. 13(1):e1006186. [PudMed:28129393]
(83) An Y, Wang J, Li C, Revote J, Zhang Y, Naderer T, Hayashida M, Akutsu T, Webb GI, Lithgow T, Song J (2017). SecretEPDB: a comprehensive web-based resource for secreted effector proteins of the bacterial types III, IV and VI secretion systems. Sci Rep. 7:41031. [PudMed:28112271]
(84) Wang J, Feng Y, Wang C, Srinivas S, Chen C, Liao H, He E, Jiang S, Tang J (2017). Pathogenic Streptococcus strains employ novel escape strategy to inhibit bacteriostatic effect mediated by mammalian peptidoglycan recognition protein. Cell Microbiol. 19(7). [PudMed:28092693]
(85) Kotewicz KM, Ramabhadran V, Sjoblom N, Vogel JP, Haenssler E, Zhang M, Behringer J, Scheck RA, Isberg RR (2017). A Single Legionella Effector Catalyzes a Multistep Ubiquitination Pathway to Rearrange Tubular Endoplasmic Reticulum for Replication. Cell Host Microbe. 21(2):169-181. [PudMed:28041930]
(86) Nelson MS, Chun CL, Sadowsky MJ (2017). Type IV Effector Proteins Involved in the Medicago-Sinorhizobium Symbiosis. Mol Plant Microbe Interact. 30(1):28-34. [PudMed:27918247]
(87) Stanger FV, de Beer TAP, Dranow DM, Schirmer T, Phan I, Dehio C (2017). The BID Domain of Type IV Secretion Substrates Forms a Conserved Four-Helix Bundle Topped with a Hook. Structure. 25(1):203-211. [PudMed:27889208]
(88) Latomanski EA, Newton P, Khoo CA, Newton HJ (2016). The Effector Cig57 Hijacks FCHO-Mediated Vesicular Trafficking to Facilitate Intracellular Replication of Coxiella burnetii. PLoS Pathog. 12(12):e1006101. [PudMed:28002452]
(89) Urbanus ML, Quaile AT, Stogios PJ, Morar M, Rao C, Di Leo R, Evdokimova E, Lam M, Oatway C, Cuff ME, Osipiuk J, Michalska K, Nocek BP, Taipale M, Savchenko A, Ensminger AW (2016). Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila. Mol Syst Biol. 12(12):893. [PudMed:27986836]
(90) Dong N, Niu M, Hu L, Yao Q, Zhou R, Shao F (2016). Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector. Nat Microbiol. 2:16236. [PudMed:27941800]
(91) Bhogaraju S, Kalayil S, Liu Y, Bonn F, Colby T, Matic I, Dikic I (2016). Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination. Cell. 167(6):1636-1649.e13. [PudMed:27912065]
(92) Chen SY, Zhang RG, Duan GC (2016). Pathogenic mechanisms of the oncoprotein CagA in H. pylori-induced gastric cancer (Review). Oncol Rep. 36(6):3087-3094. [PudMed:27748858]
(93) Königer V, Holsten L, Harrison U, Busch B, Loell E, Zhao Q, Bonsor DA, Roth A, Kengmo-Tchoupa A, Smith SI, Mueller S, Sundberg EJ, Zimmermann W, Fischer W, Hauck CR, Haas R (2016). Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA. Nat Microbiol. 2:16188. [PudMed:27748756]
(94) Sherwood RK, Roy CR (2016). Autophagy Evasion and Endoplasmic Reticulum Subversion: The Yin and Yang of Legionella Intracellular Infection. Annu Rev Microbiol. 70:413-33. [PudMed:27607556]
(95) Lind J, Backert S, Hoffmann R, Eichler J, Yamaoka Y, Perez-Perez GI, Torres J, Sticht H, Tegtmeyer N (2016). Systematic analysis of phosphotyrosine antibodies recognizing single phosphorylated EPIYA-motifs in CagA of East Asian-type Helicobacter pylori strains. BMC Microbiol. 16(1):201. [PudMed:27590005]
(96) Saju P, Murata-Kamiya N, Hayashi T, Senda Y, Nagase L, Noda S, Matsusaka K, Funata S, Kunita A, Urabe M, Seto Y, Fukayama M, Kaneda A, Hatakeyama M (2016). Host SHP1 phosphatase antagonizes Helicobacter pylori CagA and can be downregulated by Epstein-Barr virus. Nat Microbiol. 1:16026. [PudMed:27572445]
(97) Wang H, Yao Y, Ni B, Shen Y, Wang X, Shen H, Shao S (2016). Helicobacter pylori CagI is associated with the stability of CagA. Microb Pathog. 99:130-134. [PudMed:27544325]
(98) Lin M, Liu H, Xiong Q, Niu H, Cheng Z, Yamamoto A, Rikihisa Y (2016). Ehrlichia secretes Etf-1 to induce autophagy and capture nutrients for its growth through RAB5 and class III phosphatidylinositol 3-kinase. Autophagy. 12(11):2145-2166. [PudMed:27541856]
(99) Wang G, Romero-Gallo J, Benoit SL, Piazuelo MB, Dominguez RL, Morgan DR, Peek RM Jr, Maier RJ (2016). Hydrogen Metabolism in Helicobacter pylori Plays a Role in Gastric Carcinogenesis through Facilitating CagA Translocation. MBio. 7(4). pii: e01022-16. [PudMed:27531909]
(100) Popa CM, Tabuchi M, Valls M (2016). Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells. Front Cell Infect Microbiol. 6:73. [PudMed:27489796]
(101) Campodonico EM, Roy CR, Ninio S (2016). Legionella pneumophila Type IV Effectors YlfA and YlfB Are SNARE-Like Proteins that Form Homo- and Heteromeric Complexes and Enhance the Efficiency of Vacuole Remodeling. PLoS One. 11(7):e0159698. [PudMed:27459495]
(102) Eisenreich W, Heuner K (2016). The life stage-specific pathometabolism of Legionella pneumophila. FEBS Lett. 590(21):3868-3886. [PudMed:27455397]
(103) Kohler LJ, Reed ShC, Sarraf SA, Arteaga DD, Newton HJ, Roy CR (2016). Effector Protein Cig2 Decreases Host Tolerance of Infection by Directing Constitutive Fusion of Autophagosomes with the Coxiella-Containing Vacuole. MBio. 7(4). pii: e01127-16. [PudMed:27435465]
(104) Krisch LM, Posselt G, Hammerl P, Wessler S (2016). CagA Phosphorylation in Helicobacter pylori-Infected B Cells Is Mediated by the Nonreceptor Tyrosine Kinases of the Src and Abl Families. Infect Immun. 84(9):2671-80. [PudMed:27382024]
(105) Sheehan KB, Martin M, Lesser CF, Isberg RR, Newton IL (2016). Identification and Characterization of a Candidate Wolbachia pipientis Type IV Effector That Interacts with the Actin Cytoskeleton. MBio. 7(4). pii: e00622-16. [PudMed:27381293]
(106) Gonzalez-Rivera C, Bhatty M, Christie PJ (2016). Mechanism and Function of Type IV Secretion During Infection of the Human Host. Microbiol Spectr. 4(3). [PudMed:27337453]
(107) Weber MM, Faris R, van Schaik EJ, McLachlan JT, Wright WU, Tellez A, Roman VA, Rowin K, Case ED, Luo ZQ, Samuel JE (2016). The Type IV Secretion System Effector Protein CirA Stimulates the GTPase Activity of RhoA and Is Required for Virulence in a Mouse Model of Coxiella burnetii Infection. Infect Immun. 84(9):2524-33. [PudMed:27324482]
(108) Yin S, Li M, Rao X, Yao X, Zhong Q, Wang M, Wang J, Peng Y, Tang J, Hu F, Zhao Y (2016). Subtilisin-like protease-1 secreted through type IV secretion system contributes to high virulence of Streptococcus suis 2. Sci Rep. 6:27369. [PudMed:27270879]
(109) Beyrakhova KA, van Straaten K, Li L, Boniecki MT, Anderson DH, Cygler M (2016). Structural and Functional Investigations of the Effector Protein LpiR1 from Legionella pneumophila. J Biol Chem. 291(30):15767-77. [PudMed:27226543]
(110) Martinez E, Allombert J, Cantet F, Lakhani A, Yandrapalli N, Neyret A, Norville IH, Favard C, Muriaux D, Bonazzi M (2016). Coxiella burnetii effector CvpB modulates phosphoinositide metabolism for optimal vacuole development. Proc Natl Acad Sci U S A. 113(23):E3260-9. [PudMed:27226300]
(111) Qiu J, Sheedlo MJ, Yu K, Tan Y, Nakayasu ES, Das C, Liu X, Luo ZQ (2016). Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature. 533(7601):120-4. [PudMed:27049943]
(112) Keestra-Gounder AM, Byndloss MX, Seyffert N, Young BM, Chávez-Arroyo A, Tsai AY, Cevallos SA, Winter MG, Pham OH, Tiffany CR, de Jong MF, Kerrinnes T, Ravindran R, Luciw PA, McSorley SJ, Bäumler AJ, Tsolis RM (2016). NOD1 and NOD2 signalling links ER stress with inflammation. Nature. 532(7599):394-7. [PudMed:27007849]
(113) Jiménez-Soto LF, Haas R (2016). The CagA toxin of Helicobacter pylori: abundant production but relatively low amount translocated. Sci Rep. 6:23227. [PudMed:26983895]
(114) Rolando M, Escoll P, Nora T, Botti J, Boitez V, Bedia C, Daniels C, Abraham G, Stogios PJ, Skarina T, Christophe C, Dervins-Ravault D, Cazalet C, Hilbi H, Rupasinghe TW, Tull D, McConville MJ, Ong SY, Hartland EL, Codogno P, Levade T, Naderer T, Savchenko A, Buchrieser C (2016). Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy. Proc Natl Acad Sci U S A. 113(7):1901-6. [PudMed:26831115]
(115) Weber MM1, Faris R1, McLachlan J1, Tellez A1, Wright WU1, Galvan G1, Luo ZQ2, Samuel JE (2016). Modulation of the host transcriptome by Coxiella burnetii nuclear effector Cbu1314. Microbes Infect. 18(5):336-45. [PudMed:26827929]
(116) Rodríguez-Escudero M, Cid VJ, Molina M, Schulze-Luehrmann J, Lührmann A, Rodríguez-Escudero I (2016). Studying Coxiella burnetii Type IV Substrates in the Yeast Saccharomyces cerevisiae: Focus on Subcellular Localization and Protein Aggregation. PLoS One. 11(1):e0148032. [PudMed:26821324]
(117) Bisle S, Klingenbeck L, Borges V, Sobotta K, Schulze-Luehrmann J, Menge C, Heydel C, Gomes JP, Lührmann A (2016). The inhibition of the apoptosis pathway by the Coxiella burnetii effector protein CaeA requires the EK repetition motif, but is independent of survivin. Virulence. 7(4):400-12. [PudMed:26760129]
(118) So EC, Schroeder GN, Carson D, Mattheis C, Mousnier A, Broncel M, Tate EW, Frankel G (2016). The Rab-binding Profiles of Bacterial Virulence Factors during Infection. J Biol Chem. 291(11):5832-43. [PudMed:26755725]
(119) Schindele F, Weiss E, Haas R, Fischer W (2016). Quantitative analysis of CagA type IV secretion by Helicobacter pylori reveals substrate recognition and translocation requirements. Mol Microbiol. 100(1):188-203. [PudMed:26713727]
(120) Labra Á, Arredondo-Zelada O, Flores-Herrera P, Marshall SH, Gómez FA (2016). In sílico identification and characterization of putative Dot/Icm secreted virulence effectors in the fish pathogen Piscirickettsia salmonis. Microb Pathog. 92:11-18. [PudMed:26706346]
(121) Bugalhão JN, Mota LJ, Franco IS (2016). Identification of regions within the Legionella pneumophila VipA effector protein involved in actin binding and polymerization and in interference with eukaryotic organelle trafficking. Microbiologyopen. 5(1):118-33. [PudMed:26626407]
(122) Zhu W, Luo ZQ (2016). Cell biology and immunology lessons taught by Legionella pneumophila. Sci China Life Sci. 59(1):3-10. [PudMed:26596966]
(123) Eichinger V, Nussbaumer T, Platzer A, Jehl MA, Arnold R, Rattei T (2016). EffectiveDB--updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems. Nucleic Acids Res. 44(D1):D669-74. [PudMed:26590402]
(124) Sankarasubramanian J, Vishnu US, Dinakaran V, Sridhar J, Gunasekaran P, Rajendhran J. (2016). Computational prediction of secretion systems and secretomes of Brucella: identification of novel type IV effectors and their interaction with the host. Mol Biosyst. 12(1):178-90. [PudMed:26575364]
(125) Wasilko DJ, Mao Y (2016). Exploiting the ubiquitin and phosphoinositide pathways by the Legionella pneumophila effector, SidC. Curr Genet. 62(1):105-8. [PudMed:26433729]
(126) Cunha LD, Ribeiro JM, Fernandes TD, Massis LM, Khoo CA, Moffatt JH, Newton HJ, Roy CR, Zamboni DS (2015). Inhibition of inflammasome activation by Coxiella burnetii type IV secretion system effector IcaA. Nat Commun. 6:10205. [PudMed:26687278]
(127) Arriola Benitez PC, Rey Serantes D, Herrmann CK, Pesce Viglietti AI, Vanzulli S, Giambartolomei GH, Comerci DJ, Delpino MV (2015). The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells. Infect Immun. 84(2):598-606. [PudMed:26667834]
(128) Sheedlo MJ, Qiu J, Tan Y, Paul LN, Luo ZQ, Das C (2015). Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination. Proc Natl Acad Sci U S A. 112(49):15090-5. [PudMed:26598703]
(129) Ke Y, Wang Y, Li W, Chen Z (2015). Type IV secretion system of Brucella spp. and its effectors. Front Cell Infect Microbiol. 5:72. [PudMed:26528442]
(130) Rikihisa Y (2015). Molecular Pathogenesis of Ehrlichia chaffeensis Infection. Annu Rev Microbiol. 69:283-304. [PudMed:26488275]
(131) Flayhan A, Bergé C, Baïlo N, Doublet P, Bayliss R, Terradot L (2015). The structure of Legionella pneumophila LegK4 type four secretion system (T4SS) effector reveals a novel dimeric eukaryotic-like kinase. Sci Rep. 5:14602. [PudMed:26419332]
(132) Horenkamp FA, Kauffman KJ, Kohler LJ, Sherwood RK, Krueger KP, Shteyn V, Roy CR, Melia TJ, Reinisch KM (2015). The Legionella Anti-autophagy Effector RavZ Targets the Autophagosome via PI3P- and Curvature-Sensing Motifs. Dev Cell. 34(5):569-76. [PudMed:26343456]
(133) Kohler LJ, Roy CR (2015). Biogenesis of the lysosome-derived vacuole containing Coxiella burnetii. Microbes Infect. 17(11-12):766-71. [PudMed:26327296]
(134) Lin YH, Doms AG, Cheng E, Kim B, Evans TR, Machner MP (2015). Host Cell-catalyzed S-Palmitoylation Mediates Golgi Targeting of the Legionella Ubiquitin Ligase GobX. Biol Chem. 290(42):25766-81. [PudMed:26316537]
(135) Son J, Jo CH, Murugan RN, Bang JK, Hwang KY, Lee WC (2015). Crystal structure of Legionella pneumophila type IV secretion system effector LegAS4. Biochem Biophys Res Commun. 465(4):817-24. [PudMed:26315269]
(136) Rennoll-Bankert KE, Rahman MS, Gillespie JJ, Guillotte ML, Kaur SJ, Lehman SS, Beier-Sexton M, Azad AF (2015). Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion. PLoS Pathog. 11(8):e1005115. [PudMed:26291822]
(137) Schroeder GN, Aurass P, Oates CV, Tate EW, Hartland EL, Flieger A, Frankel G (2015). Legionella pneumophila Effector LpdA Is a Palmitoylated Phospholipase D Virulence Factor. Infect Immun. 83(10):3989-4002. [PudMed:26216420]
(138) Tafreshi M, Zwickel N, Gorrell RJ, Kwok T (2015). Preservation of Helicobacter pylori CagA Translocation and Host Cell Proinflammatory Responses in the Face of CagL Hypervariability at Amino Acid Residues 58/59. PLoS One. 10(7):e0133531. [PudMed:26196862]
(139) Quaile AT, Urbanus ML, Stogios PJ, Nocek B, Skarina T, Ensminger AW, Savchenko A (2015). Molecular Characterization of LubX: Functional Divergence of the U-Box Fold by Legionella pneumophila. Structure. 23(8):1459-1469. [PudMed:26146184]
(140) Haenssler E, Ramabhadran V, Murphy CS, Heidtman MI, Isberg RR (2015). Endoplasmic Reticulum Tubule Protein Reticulon 4 Associates with the Legionella pneumophila Vacuole and with Translocated Substrate Ceg9. Infect Immun. 83(9):3479-89. [PudMed:26099580]
(141) Backert S, Tegtmeyer N, Fischer W (2015). Composition, structure and function of the Helicobacter pylori cag pathogenicity island encoded type IV secretion system. Future Microbiol. 10(6):955-65. [PudMed:26059619]
(142) So EC, Mattheis C, Tate EW, Frankel G, Schroeder GN (2015). Creating a customized intracellular niche: subversion of host cell signaling by Legionella type IV secretion system effectors. Can J Microbiol. 61(9):617-35. [PudMed:26059316]
(143) Mishra JP, Cohen D, Zamperone A, Nesic D, Muesch A, Stein M (2015). CagA of Helicobacter pylori interacts with and inhibits the serine-threonine kinase PRK2. Cell Microbiol. 17(11):1670-82. [PudMed:26041307]
(144) Rennoll-Bankert KE, Garcia-Garcia JC, Sinclair SH, Dumler JS (2015). Chromatin-bound bacterial effector ankyrin A recruits histone deacetylase 1 and modifies host gene expression. Cell Microbiol. 17(11):1640-52. [PudMed:25996657]
(145) Michard C, Sperandio D, Baïlo N, Pizarro-Cerdá J, LeClaire L, Chadeau-Argaud E, Pombo-Grégoire I, Hervet E, Vianney A, Gilbert C, Faure M, Cossart P, Doublet P (2015). The Legionella Kinase LegK2 Targets the ARP2/3 Complex To Inhibit Actin Nucleation on Phagosomes and Allow Bacterial Evasion of the Late Endocytic Pathway. MBio. 6(3):e00354-15. [PudMed:25944859]
(146) Martínez-García PM, Ramos C, Rodríguez-Palenzuela P (2015). T346Hunter: a novel web-based tool for the prediction of type III, type IV and type VI secretion systems in bacterial genomes. PLoS One. 10(4):e0119317. [PudMed:25867189]
(147) Asrat S, Davis KM, Isberg RR (2015). Modulation of the host innate immune and inflammatory response by translocated bacterial proteins. Cell Microbiol. 17(6):785-795. [PudMed:25850689]
(148) Sohn YS, Shin HC, Park WS, Ge J, Kim CH, Lee BL, Heo WD, Jung JU, Rigden DJ, Oh BH (2015). Lpg0393 of Legionella pneumophila is a guanine-nucleotide exchange factor for Rab5, Rab21 and Rab22. PLoS One. 10(3):e0118683. [PudMed:25821953]
(149) Lina TT, Alzahrani S, House J, Yamaoka Y, Sharpe AH, Rampy BA, Pinchuk IV, Reyes VE (2015). Helicobacter pylori cag pathogenicity island's role in B7-H1 induction and immune evasion. PLoS One. 10(3):e0121841. [PudMed:25807464]
(150) Jeong KC, Sexton JA, Vogel JP (2015). Spatiotemporal regulation of a Legionella pneumophila T4SS substrate by the metaeffector SidJ. PLoS Pathog. 11(3):e1004695. [PudMed:25774515]
(151) Souza DP, Oka GU, Alvarez-Martinez CE, Bisson-Filho AW, Dunger G, Hobeika L, Cavalcante NS, Alegria MC, Barbosa LR, Salinas RK, Guzzo CR, Farah CS. (2015). Bacterial killing via a type IV secretion system. Nat Commun. 6;6:6453. [PudMed:25743609]
(152) Sinclair SH, Garcia-Garcia JC, Dumler JS. (2015). Bioinformatic and mass spectrometry identification of Anaplasma phagocytophilum proteins translocated into host cell nuclei. Front Microbiol. 6:55. [PudMed:25705208]
(153) Zhang XS, Tegtmeyer N, Traube L, Jindal S, Perez-Perez G, Sticht H, Backert S, Blaser MJ (2015). A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interactions. PLoS Pathog. 11(2):e1004621. [PudMed:25646814]
(154) O'Brien KM, Lindsay EL, Starai VJ (2015). The Legionella pneumophila effector protein, LegC7, alters yeast endosomal trafficking. PLoS One. 10(2):e0116824. [PudMed:25643265]
(155) Graham JG, Winchell CG, Sharma UM, Voth DE (2015). Identification of ElpA, a Coxiella burnetii pathotype-specific Dot/Icm type IV secretion system substrate. Infect Immun. 83(3):1190-8. [PudMed:25605765]
(156) King, N. P., Newton, P. , Schuelein, R. , Brown, D. L., Petru, M. , Zarsky, V. , Dolezal, P. , Luo, L. , Bugarcic, A. , Stanley, A. C., Murray, R. Z., Collins, B. M., Teasdale, R. D., Hartland, E. L. and Stow, J. L (2015). Soluble NSF attachment protein receptor molecular mimicry by a Legionella pneumophila Dot/Icm effector. Cell Microbiol. 17(6):767-84. [PudMed:25488819]
(157) Siamer S, Dehio C (2015). New insights into the role of Bartonella effector proteins in pathogenesis. Curr Opin Microbiol. 23:80-5. [PudMed:25461577]
(158) Larson CL, Beare PA, Voth DE, Howe D, Cockrell DC, Bastidas RJ, Valdivia RH, Heinzen RA (2015). Coxiella burnetii effector proteins that localize to the parasitophorous vacuole membrane promote intracellular replication. Infect Immun. 83(2):661-70. [PudMed:25422265]
(159) Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, Azad AF (2015). Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev. 39(1):47-80. [PudMed:25168200]
(160) Portier E, Zheng H, Sahr T, Burnside DM, Mallama C, Buchrieser C, Cianciotto NP, Héchard Y (2015). IroT/mavN, a new iron-regulated gene involved in Legionella pneumophila virulence against amoebae and macrophages. Environ Microbiol. 17(4):1338-50. [PudMed:25141909]
(161) Gomez-Valero L, Rusniok C, Rolando M, Neou M, Dervins-Ravault D, Demirtas J, Rouy Z, Moore RJ, Chen H, Petty NK, Jarraud S, Etienne J, Steinert M, Heuner K, Gribaldo S, Médigue C, Glöckner G, Hartland EL, Buchrieser C (2014). Comparative analyses of Legionella species identifies genetic features of strains causing Legionnaires' disease. Genome Biol. 15(11):505. [PudMed:25370836]
(162) Weber S, Stirnimann CU, Wieser M, Frey D, Meier R, Engelhardt S, Li X, Capitani G, Kammerer RA, Hilbi H (2014). A type IV translocated Legionella cysteine phytase counteracts intracellular growth restriction by phytate. J Biol Chem. 289(49):34175-88. [PudMed:25339170]
(163) Mousnier A, Schroeder GN, Stoneham CA, So EC, Garnett JA, Yu L, Matthews SJ, Choudhary JS, Hartland EL, Frankel G (2014). A new method to determine in vivo interactomes reveals binding of the Legionella pneumophila effector PieE to multiple rab GTPases. MBio. 5(4). pii: e01148-14. [PudMed:25118235]
(164) Lévesque S, Plante PL, Mendis N, Cantin P, Marchand G, Charest H, Raymond F, Huot C, Goupil-Sormany I, Desbiens F, Faucher SP, Corbeil J, Tremblay C (2014). Genomic characterization of a large outbreak of Legionella pneumophila serogroup 1 strains in Quebec City, 2012. PLoS One. 9(8):e103852. [PudMed:25105285]
(165) Guimarães NM, Azevedo NF, Vieira MJ, Figueiredo C (2014). Water-induced modulation of Helicobacter pylori virulence properties. Mem Inst Oswaldo Cruz. 109(4):414-9. [PudMed:25075780]
(166) Lee DG, Kim HS, Lee YS, Kim S, Cha SY, Ota I, Kim NH, Cha YH, Yang DH, Lee Y, Park GJ, Yook JI, Lee Y (2014). Helicobacter pylori CagA promotes Snail-mediated epithelial-mesenchymal transition by reducing GSK-3 activity. Nat Commun. 5:4423. [PudMed:25055241]
(167) Dolinsky S, Haneburger I, Cichy A, Hannemann M, Itzen A, Hilbi H (2014). The Legionella longbeachae Icm/Dot substrate SidC selectively binds phosphatidylinositol 4-phosphate with nanomolar affinity and promotes pathogen vacuole-endoplasmic reticulum interactions. Infect Immun. 82(10):4021-33. [PudMed:25024371]
(168) Hsu F, Luo X, Qiu J, Teng YB, Jin J, Smolka MB, Luo ZQ, Mao Y (2014). The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling. Proc Natl Acad Sci U S A. 111(29):10538-43. [PudMed:25006264]
(169) Hubber A, Arasaki K, Nakatsu F, Hardiman C, Lambright D, De Camilli P, Nagai H, Roy CR (2014). The machinery at endoplasmic reticulum-plasma membrane contact sites contributes to spatial regulation of multiple Legionella effector proteins. PLoS Pathog. 10(7):e1004222. [PudMed:24992562]
(170) Lifshitz Z, Burstein D, Schwartz K, Shuman HA, Pupko T, Segal G (2014). Identification of novel Coxiella burnetii Icm/Dot effectors and genetic analysis of their involvement in modulating a mitogen-activated protein kinase pathway. Infect Immun. 82(9):3740-52. [PudMed:24958706]
(171) Okujava R, Guye P, Lu YY, Mistl C, Polus F, Vayssier-Taussat M, Halin C, Rolink AG, Dehio C (2014). A translocated effector required for Bartonella dissemination from derma to blood safeguards migratory host cells from damage by co-translocated effectors. PLoS Pathog. 10(6):e1004187. [PudMed:24945914]
(172) Flores-Ramirez G, Jankovicova B, Bilkova Z, Miernyk JA, Skultety L (2014). Identification of Coxiella burnetii surface-exposed and cell envelope associated proteins using a combined bioinformatics plus proteomics strategy. Proteomics. 14(16):1868-81. [PudMed:24909302]
(173) Lind J, Backert S, Pfleiderer K, Berg DE, Yamaoka Y, Sticht H, Tegtmeyer N (2014). Systematic analysis of phosphotyrosine antibodies recognizing single phosphorylated EPIYA-motifs in CagA of Western-type Helicobacter pylori strains. PLoS One. 9(5):e96488. [PudMed:24800748]
(174) Isaac DT, Isberg R (2014). Master manipulators: an update on Legionella pneumophila Icm/Dot translocated substrates and their host targets. Future Microbiol. 9(3):343-59. [PudMed:24762308]
(175) Eckart RA, Bisle S, Schulze-Luehrmann J, Wittmann I, Jantsch J, Schmid B, Berens C, Lührmann A (2014). Antiapoptotic activity of Coxiella burnetii effector protein AnkG is controlled by p32-dependent trafficking. Infect Immun. 82(7):2763-71. [PudMed:24733095]
(176) Martinez E, Cantet F, Fava L, Norville I, Bonazzi M (2014). Identification of OmpA, a Coxiella burnetii protein involved in host cell invasion, by multi-phenotypic high-content screening. PLoS Pathog. 10(3):e1004013. [PudMed:24651569]
(177) Gaspar AH, Machner MP (2014). VipD is a Rab5-activated phospholipase A1 that protects Legionella pneumophila from endosomal fusion. Proc Natl Acad Sci U S A. 111(12):4560-5. [PudMed:24616501]
(178) Beare PA, Sandoz KM, Larson CL, Howe D, Kronmiller B, Heinzen RA (2014). Essential role for the response regulator PmrA in Coxiella burnetii type 4B secretion and colonization of mammalian host cells. J Bacteriol. 196(11):1925-40. [PudMed:24610709]
(179) Yao D, Cherney M, Cygler M (2014). Structure of the N-terminal domain of the effector protein LegC3 from Legionella pneumophila. Acta Crystallogr D Biol Crystallogr. 70(Pt 2):436-41. [PudMed:24531477]
(180) Del Campo CM, Mishra AK, Wang YH, Roy CR, Janmey PA, Lambright DG (2014). Structural basis for PI(4)P-specific membrane recruitment of the Legionella pneumophila effector DrrA/SidM. Structure. 22(3):397-408. [PudMed:24530282]
(181) Fernandez-Gonzalez E, Backert S (2014). DNA transfer in the gastric pathogen Helicobacter pylori. J Gastroenterol. 49(4):594-604. [PudMed:24515309]
(182) Horenkamp FA, Mukherjee S, Alix E, Schauder CM, Hubber AM, Roy CR, Reinisch KM. (2014). Legionella pneumophila subversion of host vesicular transport by SidC effector proteins. Traffic. 15(5):488-99. [PudMed:24483784]
(183) Nešić D, Buti L, Lu X, Stebbins CE (2014). Structure of the Helicobacter pylori CagA oncoprotein bound to the human tumor suppressor ASPP2. Proc Natl Acad Sci U S A. 111(4):1562-7. [PudMed:24474782]
(184) Wang Y, Wei X, Bao H, Liu SL (2014). Prediction of bacterial type IV secreted effectors by C-terminal features. BMC Genomics. 15:50. [PudMed:24447430]
(185) Sokolova O, Maubach G, Naumann M2 (2014). MEKK3 and TAK1 synergize to activate IKK complex in Helicobacter pylori infection. Biochim Biophys Acta. 1843(4):715-24. [PudMed:24418622]
(186) Sakalis PA, van Heusden GP, Hooykaas PJ (2014). Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells. Microbiologyopen. 3(1):104-17. [PudMed:24376037]
(187) Guo Z, Stephenson R, Qiu J, Zheng S, Luo ZQ (2014). A Legionella effector modulates host cytoskeletal structure by inhibiting actin polymerization. Microbes Infect. 16(3):225-36. [PudMed:24286927]
(188) Döhmer PH, Valguarnera E, Czibener C, Ugalde JE (2014). Identification of a type IV secretion substrate of Brucella abortus that participates in the early stages of intracellular survival. Cell Microbiol. 16(3):396-410. [PudMed:24119283]
(189) Macdonald LJ, Graham JG, Kurten RC, Voth DE (2014). Coxiella burnetii exploits host cAMP-dependent protein kinase signalling to promote macrophage survival. Cell Microbiol. 16(1):146-59. [PudMed:24028560]
(190) Wee BA, Woolfit M, Beatson SA, Petty NK (2013). A distinct and divergent lineage of genomic island-associated Type IV Secretion Systems in Legionella. PLoS One. 8(12):e82221. [PudMed:24358157]
(191) Meng G, An X, Ye S, Liu Y, Zhu W, Zhang R, Zheng X (2013). The crystal structure of LidA, a translocated substrate of the Legionella pneumophila type IV secretion system.. Protein Cell. 4(12):897-900. [PudMed:24293259]
(192) Larson CL, Beare PA, Howe D, Heinzen RA (2013). Coxiella burnetii effector protein subverts clathrin-mediated vesicular trafficking for pathogen vacuole biogenesis. Proc Natl Acad Sci U S A. 110(49):E4770-9. [PudMed:24248335]
(193) Woon AP, Tohidpour A, Alonso H, Saijo-Hamano Y, Kwok T, Roujeinikova A (2013). Conformational analysis of isolated domains of Helicobacter pylori CagA. PLoS One. 8(11):e79367. [PudMed:24223932]
(194) Bonsor DA, Weiss E, Iosub-Amir A, Reingewertz TH, Chen TW, Haas R, Friedler A, Fischer W, Sundberg EJ (2013). Characterization of the translocation-competent complex between the Helicobacter pylori oncogenic protein CagA and the accessory protein CagF. J Biol Chem. 288(46):32897-909. [PudMed:24072713]
(195) Rothmeier E, Pfaffinger G, Hoffmann C, Harrison CF, Grabmayr H, Repnik U, Hannemann M, Wölke S, Bausch A, Griffiths G, Müller-Taubenberger A, Itzen A, Hilbi H (2013). Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection. PLoS Pathog. 9(9):e1003598. [PudMed:24068924]
(196) Zou L, Nan C, Hu F (2013). Accurate prediction of bacterial type IV secreted effectors using amino acid composition and PSSM profiles. Bioinformatics. 29(24):3135-42. [PudMed:24064423]
(197) Kumar N, Shariq M, Kumari R, Tyagi RK, Mukhopadhyay G (2013). Cag type IV secretion system: CagI independent bacterial surface localization of CagA. PLoS One. 8(9):e74620. [PudMed:24040297]
(198) Harding CR, Mattheis C, Mousnier A, Oates CV, Hartland EL, Frankel G, Schroeder GN (2013). LtpD is a novel Legionella pneumophila effector that binds phosphatidylinositol 3-phosphate and inositol monophosphatase IMPA1. Infect Immun. 81(11):4261-70. [PudMed:24002062]
(199) Sokolova O, Borgmann M, Rieke C, Schweitzer K, Rothkötter HJ, Naumann M (2013). Helicobacter pylori induces type 4 secretion system-dependent, but CagA-independent activation of IκBs and NF-κB/RelA at early time points. Int J Med Microbiol. 303(8):548-52. [PudMed:23972614]
(200) Myeni S, Child R, Ng TW, Kupko JJ 3rd, Wehrly TD, Porcella SF, Knodler LA, Celli J (2013). Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog. 9(8):e1003556. [PudMed:23950720]
(201) Meyer DF, Noroy C, Moumène A, Raffaele S, Albina E, Vachiéry N. (2013). Searching algorithm for type IV secretion system effectors 1.0: a tool for predicting type IV effectors and exploring their genomic context. Nucleic Acids Res. 41(20):9218-29. [PudMed:23945940]
(202) Elzbieta Brzuszkiewicz, Tino Schulz, Kerstin Rydzewski, Rolf Daniel, Nadine Gillmaier, Christine Dittmann, Gudrun Holland, Eva Schunder, Monika Lautner, Wolfgang Eisenreich, Christian Lück, Klaus Heuner (2013). Legionella oakridgensis ATCC 33761 genome sequence and phenotypic characterization reveals its replication capacity in amoebae. Int J Med Microbiol. 303(8):514-28. [PudMed:23932911]
(203) Ivo Finsel, Curdin Ragaz, Christine Hoffmann, Christopher F. Harrison, Stephen Weber, Vanessa A. van Rahden, Ludger Johannes, Hubert Hilbi (2013). The Legionella effector RidL inhibits retrograde trafficking to promote intracellular replication. Cell Host & Microbe. 14,38–50. [PudMed:23870312]
(204) Salcedo SP, Marchesini MI, Degos C, Terwagne M, Von Bargen K, Lepidi H, Herrmann CK, Santos Lacerda TL, Imbert PRC, Pierre P, Alexopoulou L, Letesson J-J, Comerci DJ and Gorvel J-P (2013). BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions. . Front. Cell. Infect. Microbiol. . 2013.00028 . [PudMed:23847770]
(205) Toulabi L, Wu X, Cheng Y, Mao Y (2013). Identification and structural characterization of a Legionella phosphoinositide phosphatase. J Biol Chem. 288(34):24518-27. [PudMed:23843460]
(206) Mishra AK, Del Campo CM, Collins RE, Roy CR, Lambright DG (2013). The Legionella pneumophila GTPase activating protein LepB accelerates Rab1 deactivation by a non-canonical hydrolytic mechanism. J Biol Chem. 288(33):24000-11. [PudMed:23821544]
(207) Weber MM, Chen C, Rowin K, Mertens K, Galvan G, Zhi H, Dealing CM, Roman VA, Banga S, Tan Y, Luo ZQ, Samuel JE (2013). Identification of Coxiella burnetii type IV secretion substrates required for intracellular replication and Coxiella-containing vacuole formation. J Bacteriol. 195(17):3914-24. [PudMed:23813730]
(208) Li T, Lu Q, Wang G, Xu H, Huang H, Cai T, Kan B, Ge J, Shao F (2013). SET-domain bacterial effectors target heterochromatin protein 1 to activate host rDNA transcription. EMBO Rep. 14(8):733-40. [PudMed:23797873]
(209) Belogolova E, Bauer B, Pompaiah M, Asakura H, Brinkman V, Ertl C, Bartfeld S, Nechitaylo TY, Haas R, Machuy N, Salama N, Churin Y, Meyer TF (2013). Helicobacter pylori outer membrane protein HopQ identified as a novel T4SS-associated virulence factor. Cell Microbiol. 15(11):1896-912. [PudMed:23782461]
(210) Zhu W, Hammad LA, Hsu F, Mao Y, Luo ZQ (2013). Induction of caspase 3 activation by multiple Legionella pneumophila Dot/Icm substrates. Cell Microbiol. 15(11):1783-95. [PudMed:23773455]
(211) Sánchez-Zauco NA, Torres J, Pérez-Figueroa GE, Álvarez-Arellano L, Camorlinga-Ponce M, Gómez A, Giono-Cerezo S, Maldonado-Bernal C (2013). Impact of cagPAI and T4SS on the inflammatory response of human neutrophils to Helicobacter pylori infection. PLoS One. 8(6):e64623. [PudMed:23755130]
(212) Chen Y, Tascón I, Neunuebel MR, Pallara C, Brady J, Kinch LN, Fernández-Recio J, Rojas AL, Machner MP, Hierro A (2013). Structural basis for Rab1 de-AMPylation by the Legionella pneumophila effector SidD. PLoS Pathog. 9(5):e1003382. [PudMed:23696742]
(213) Maturana P, Graham JG, Sharma UM, Voth DE (2013). Refining the plasmid-encoded type IV secretion system substrate repertoire of Coxiella burnetii. J Bacteriol. ;195(14):3269-76. [PudMed:23687269]
(214) Monica Rolando, Serena Sanulli, Christophe Rusniok, Laura Gomez-Valero, Clement Bertholet, Tobias Sahr, Raphael Margueron, Carmen Buchrieser (2013). Legionella pneumophila effector RomA uniquely modifies host chromatin to repress gene expression and promote intracellular bacterial replication. Cell Host Microbe. 13(4):395-405. [PudMed:23601102]
(215) Yu Q, Hu L, Yao Q, Zhu Y, Dong N, Wang DC, Shao F (2013). Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP. Cell Res. 23(6):775-87. [PudMed:23588383]
(216) Campanacci V, Mukherjee S, Roy CR, Cherfils J (2013). Structure of the Legionella effector AnkX reveals the mechanism of phosphocholine transfer by the FIC domain. EMBO J. 32(10):1469-77. [PudMed:23572077]
(217) Chen Y, Machner MP (2013). Targeting of the small GTPase Rab6A' by the Legionella pneumophila effector LidA. Infect Immun. 81(6):2226-35. [PudMed:23569112]
(218) Aurass P, Schlegel M, Metwally O, Harding CR, Schroeder GN, Frankel G, Flieger A (2013). The Legionella pneumophila Dot/Icm-secreted effector PlcC/CegC1 together with PlcA and PlcB promotes virulence and belongs to a novel zinc metallophospholipase C family present in bacteria and fungi. J Biol Chem. 288(16):11080-92. [PudMed:23457299]
(219) Khweek AA, Caution K, Akhter A, Abdulrahman BA, Tazi M, Hassan H, Majumdar N, Doran A, Guirado E, Schlesinger LS, Shuman H, Amer AO (2013). A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy. Eur J Immunol. 43(5):1333-44. [PudMed:23420491]
(220) Papadakos KS, Sougleri IS, Mentis AF, Hatziloukas E, Sgouras DN (2013). Presence of terminal EPIYA phosphorylation motifs in Helicobacter pylori CagA contributes to IL-8 secretion, irrespective of the number of repeats. PLoS One. 8(2):e56291. [PudMed:23409168]
(221) Niu H, Rikihisa Y (2013). Ats-1: a novel bacterial molecule that links autophagy to bacterial nutrition. Autophagy. 9(5):787-8. [PudMed:23388398]
(222) Newton HJ, McDonough JA, Roy CR (2013). Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole. PLoS One. 8(1):e54566. [PudMed:23349930]
(223) Lu YY, Franz B, Truttmann MC, Riess T, Gay-Fraret J, Faustmann M, Kempf VA, Dehio C (2013). Bartonella henselae trimeric autotransporter adhesin BadA expression interferes with effector translocation by the VirB/D4 type IV secretion system. Cell Microbiol. 15(5):759-78. [PudMed:23163798]
(224) Klingenbeck L, Eckart RA, Berens C, Lührmann A (2013). The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level. Cell Microbiol. 15(4):675-87. [PudMed:23126667]
(225) Gobert AP, Verriere T, de Sablet T, Peek RM Jr, Chaturvedi R, Wilson KT (2013). Haem oxygenase-1 inhibits phosphorylation of the Helicobacter pylori oncoprotein CagA in gastric epithelial cells. Cell Microbiol. 15(1):145-56. [PudMed:23051580]
(226) Ku B, Lee KH, Park WS, Yang CS, Ge J, Lee SG, Cha SS, Shao F, Heo WD, Jung JU, Oh BH (2012). VipD of Legionella pneumophila targets activated Rab5 and Rab22 to interfere with endosomal trafficking in macrophages. PLoS Pathog. 8(12):e1003082. [PudMed:23271971]
(227) Tsugawa H, Suzuki H, Saya H, Hatakeyama M, Hirayama T, Hirata K, Nagano O, Matsuzaki J, Hibi T (2012). Reactive oxygen species-induced autophagic degradation of Helicobacter pylori CagA is specifically suppressed in cancer stem-like cells. Cell Host Microbe. 12(6):764-77. [PudMed:23245321]
(228) Hardiman CA, McDonough JA, Newton HJ, Roy CR (2012). The role of Rab GTPases in the transport of vacuoles containing Legionella pneumophila and Coxiella burnetii. Biochem Soc Trans. 40(6):1353-9. [PudMed:23176480]
(229) Viner R, Chetrit D, Ehrlich M, Segal G (2012). Identification of two Legionella pneumophila effectors that manipulate host phospholipids biosynthesis. PLoS Pathog. 8(11):e1002988. [PudMed:23133385]
(230) Choy A, Dancourt J, Mugo B, O'Connor TJ, Isberg RR, Melia TJ, Roy CR (2012). The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science. 338(6110):1072-6. [PudMed:23112293]
(231) Hsu F, Zhu W, Brennan L, Tao L, Luo ZQ, Mao Y (2012). Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proc Natl Acad Sci U S A. 109(34):13567-72. [PudMed:22872863]
(232) Hayashi T, Senda M, Morohashi H, Higashi H, Horio M, Kashiba Y, Nagase L, Sasaya D, Shimizu T, Venugopalan N, Kumeta H, Noda NN, Inagaki F, Senda T, Hatakeyama M (2012). Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. Cell Host Microbe. 12(1):20-33. [PudMed:22817985]
(233) McDonough JA et al (2012). Coxiella burnetii Secretion Systems. Adv Exp Med Biol. 984:171-97. [PudMed:22711632]
(234) Harding CR et al (2012). Legionella pneumophila pathogenesis in the Galleria mellonella infection model. Infect Immun. . [PudMed:22645286]
(235) Smolka AJ et al (2012). How Helicobacter pylori infection controls gastric acid secretion. J Gastroenterol. . [PudMed:22565637]
(236) Eicher SC et al (2012). Bartonella entry mechanisms into mammalian host cells. Cell Microbiol. . [PudMed:22519749]
(237) Ge J, Gong YN, Xu Y, Shao F (2012). Preventing bacterial DNA release and absent in melanoma 2 inflammasome activation by a Legionella effector functioning in membrane trafficking. Proc Natl Acad Sci U S A. 109(16):6193-8. [PudMed:22474394]
(238) Chan YA et al (2012). The Lytic Transglycosylases of Neisseria gonorrhoeae. Microb Drug Resist. 18(3):271-9. [PudMed:22432703]
(239) Cheng W, Yin K, Lu D, Li B, Zhu D, Chen Y, Zhang H, Xu S, Chai J, Gu L (2012). Structural insights into a unique Legionella pneumophila effector LidA recognizing both GDP and GTP bound Rab1 in their active state.. PLoS Pathog. 8(3):e1002528. [PudMed:22416225]
(240) Zechner EL et al (2012). Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci. 367(1592):1073-87. [PudMed:22411979]
(241) Rolando M et al (2012). Post-translational modifications of host proteins by Legionella pneumophila: a sophisticated survival strategy. Future Microbiol. 7(3):369-81. [PudMed:22393890]
(242) Franco IS, Shohdy N, Shuman HA (2012). The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog. 8(2):e1002546. [PudMed:22383880]
(243) von Bargen K et al (2012). Internal affairs: investigating the Brucella intracellular lifestyle. FEMS Microbiol Rev. 36(3):533-62. [PudMed:22373010]
(244) Liu H et al (2012). Ehrlichia type IV secretion effector ECH0825 is translocated to mitochondria and curbs ROS and apoptosis by upregulating host MnSOD. Cell Microbiol. 14(7):1037-50. [PudMed:22348527]
(245) Voth DE et al (2012). Bacterial Type IV secretion systems: versatile virulence machines. Future Microbiol. 7(2):241-57. [PudMed:22324993]
(246) Creasey EA, Isberg RR (2012). The protein SdhA maintains the integrity of the Legionella-containiCreasey EA1, Isberg RR.ng vacuole. Proc Natl Acad Sci U S A. 109(9):3481-6. [PudMed:22308473]
(247) Goody PR et al (2012). Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J. 31(7):1774-84. [PudMed:22307087]
(248) Jank T, Böhmer KE, Tzivelekidis T, Schwan C, Belyi Y, Aktories K (2012). Domain organization of Legionella effector SetA. Cell Microbiol. 14(6):852-68. [PudMed:22288428]
(249) Rizzato C et al (2012). Variations in Helicobacter pylori cytotoxin-associated genes and their influence in progression to gastric cancer: implications for prevention. PLoS One. 7(1):e29605. [PudMed:22235308]
(250) Neunuebel MR et al (2012). Legionella pneumophila LidA affects nucleotide binding and activity of the host GTPase Rab1. J Bacteriol. 194(6):1389-400. [PudMed:22228731]
(251) de Jong MF et al (2012). Brucellosis and type IV secretion. Future Microbiol. 7(1):47-58. [PudMed:22191446]
(252) Altman E et al (2012). Helicobacter pylori isolates from Greek children express type 2 and type 1 Lewis and alpha1,6-glucan antigens in conjunction with a functional type IV secretion system. J Med Microbiol. 61(Pt 4):559-66. [PudMed:22160312]
(253) Luo ZQ (2012). Legionella secreted effectors and innate immune responses. Cell Microbiol. 14(1):19-27. [PudMed:21985602]
(254) Voth DE (2011). ThANKs for the repeat: Intracellular pathogens exploit a common eukaryotic domain. Cell Logist. 1(4):128-132. [PudMed:22279611]
(255) Dubreuil R et al (2011). Bringing host-cell takeover by pathogenic bacteria to center stage. Cell Logist. 1(4):120-124. [PudMed:22279609]
(256) Tzivelekidis T et al (2011). Aminoacyl-tRNA-charged eukaryotic elongation factor 1A is the bona fide substrate for Legionella pneumophila effector glucosyltransferases. PLoS One. 6(12):e29525. [PudMed:22216304]
(257) Lockwood S et al (2011). Identification of Anaplasma marginale type IV secretion system effector proteins. PLoS One. 6(11):e27724. [PudMed:22140462]
(258) Price CT, Al-Quadan T, Santic M, Rosenshine I, Abu Kwaik Y (2011). Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science. 334(6062):1553-7. [PudMed:22096100]
(259) Lai CH et al (2011). Helicobacter pylori CagA-mediated IL-8 induction in gastric epithelial cells is cholesterol-dependent and requires the C-terminal tyrosine phosphorylation-containing domain. FEMS Microbiol Lett. 323(2):155-63. [PudMed:22092715]
(260) Delgado-Rosado G et al (2011). Positive selection on a bacterial oncoprotein associated with gastric cancer. Gut Pathog. 3:18. [PudMed:22078307]
(261) Gomez-Valero L et al (2011). Comparative and functional genomics of legionella identified eukaryotic like proteins as key players in host-pathogen interactions. Front Microbiol. 2:208. [PudMed:22059087]
(262) Truttmann MC et al (2011). Bartonella henselae engages inside-out and outside-in signaling by integrin beta1 and talin1 during invasome-mediated bacterial uptake. J Cell Sci. 124(Pt 21):3591-602. [PudMed:22045736]
(263) Backert S et al (2011). Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori. Cell Commun Signal. 9:28. [PudMed:22044679]
(264) Wessler S et al (2011). Regulation of the actin cytoskeleton in Helicobacter pylori-induced migration and invasive growth of gastric epithelial cells. Cell Commun Signal. 9(1):27. [PudMed:22044652]
(265) Truttmann MC et al (2011). BID-F1 and BID-F2 domains of Bartonella henselae effector protein BepF trigger together with BepC the formation of invasome structures. PLoS One. 6(10):e25106. [PudMed:22043280]
(266) Berry TM et al (2011). Caught in the act: the dialogue between bacteriophage R17 and the type IV secretion machine of plasmid R1. Mol Microbiol. 82(5):1039-43. [PudMed:22023392]
(267) Schoebel S, Cichy AL, Goody RS, Itzen A (2011). Protein LidA from Legionella is a Rab GTPase supereffector. Proc Natl Acad Sci U S A. 108(44):17945-50. [PudMed:22011575]
(268) Mori N et al (2011). Induction of CD69 expression by cagPAI-positive Helicobacter pylori infection. World J Gastroenterol. 17(32):3691-9. [PudMed:21990950]
(269) Ge J et al (2011). Manipulation of host vesicular trafficking and innate immune defence by Legionella Dot/Icm effectors. Cell Microbiol. 13(12):1870-80. [PudMed:21981078]
(270) Shaffer CL et al (2011). Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface. PLoS Pathog. 7(9):e1002237. [PudMed:21909278]
(271) Jalan N et al (2011). Comparative genomic analysis of Xanthomonas axonopodis pv. citrumelo F1, which causes citrus bacterial spot disease, and related strains provides insights into virulence and host specificity. J Bacteriol. 193(22):6342-57. [PudMed:21908674]
(272) Backert S et al (2011). Pathogenesis of Helicobacter pylori infection. Helicobacter. 16 Suppl 1:19-25. [PudMed:21896081]
(273) Paredes-Cervantes V et al (2011). Comparative proteome analysis of Brucella abortus 2308 and its virB type IV secretion system mutant reveals new T4SS-related candidate proteins. J Proteomics. 74(12):2959-71. [PudMed:21875698]
(274) Schroder G et al (2011). Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae. Proc Natl Acad Sci U S A. 108(35):14643-8. [PudMed:21844337]
(275) Hilbi H et al (2011). Anchors for effectors: subversion of phosphoinositide lipids by legionella. Front Microbiol. 2:91. [PudMed:21833330]
(276) Ramsey ME et al (2011). The Gonococcal Genetic Island and Type IV Secretion in the Pathogenic Neisseria. Front Microbiol. 2:61. [PudMed:21833316]
(277) Mukherjee S, Liu X, Arasaki K, McDonough J, Galán JE, Roy CR (2011). Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature. 477(7362):103-6. [PudMed:21822290]
(278) Nagase L et al (2011). Potentiation of Helicobacter pylori CagA protein virulence through homodimerization. J Biol Chem. 286(38):33622-31. [PudMed:21813645]
(279) Haenssler E et al (2011). Control of host cell phosphorylation by legionella pneumophila. Front Microbiol. 2:64. [PudMed:21747787]
(280) Joshi AD et al (2011). Secrets of a successful pathogen: legionella resistance to progression along the autophagic pathway. Front Microbiol. 2:138. [PudMed:21743811]
(281) Locht C et al (2011). The ins and outs of pertussis toxin. FEBS J. 278(23):4668-82. [PudMed:21740523]
(282) Tan Y et al (2011). Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature. 475(7357):506-9. [PudMed:21734656]
(283) Rikihisa Y (2011). Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clin Microbiol Rev. 24(3):469-89. [PudMed:21734244]
(284) Marchesini MI et al (2011). In search of Brucella abortus type IV secretion substrates: screening and identification of four proteins translocated into host cells through VirB system. Cell Microbiol. 13(8):1261-74. [PudMed:21707904]
(285) Luo ZQ (2011). Striking a balance: modulation of host cell death pathways by legionella pneumophila. Front Microbiol. 2:36. [PudMed:21687427]
(286) Luo ZQ (2011). Targeting One of its Own: Expanding Roles of Substrates of the Legionella Pneumophila Dot/Icm Type IV Secretion System. Front Microbiol. 2:31. [PudMed:21687422]
(287) Neunuebel MR, Chen Y, Gaspar AH, Backlund PS Jr, Yergey A, Machner MP (2011). De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science. 333(6041):453-6. [PudMed:21680813]
(288) Carey KL et al (2011). The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication. PLoS Pathog. 7(5):e1002056. [PudMed:21637816]
(289) Steininger S et al (2011). Purpose of recently detected inhibitory domain of the Helicobacter pylori protein CagA. Gut Microbes. 2(3):167-72. [PudMed:21637033]
(290) Ishijima N et al (2011). BabA-mediated adherence is a potentiator of the Helicobacter pylori type IV secretion system activity. J Biol Chem. 286(28):25256-64. [PudMed:21596743]
(291) Zhu W et al (2011). Protein expression, crystallization and preliminary X-ray crystallographic studies of LidA from Legionella pneumophila. Acta Crystallogr Sect F Struct Biol Cryst Commun. 67(Pt 5):637-9. [PudMed:21543880]
(292) Arnold IC et al (2011). The C-terminally encoded, MHC class II-restricted T cell antigenicity of the Helicobacter pylori virulence factor CagA promotes gastric preneoplasia. J Immunol. 186(11):6165-72. [PudMed:21518972]
(293) de Barsy M et al (2011). Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cell Microbiol. 13(7):1044-58. [PudMed:21501366]
(294) Franz B et al (2011). Adhesion and host cell modulation: critical pathogenicity determinants of Bartonella henselae. Parasit Vectors. 4:54. [PudMed:21489243]
(295) Banta LM et al (2011). An Agrobacterium VirB10 mutation conferring a type IV secretion system gating defect. J Bacteriol. 193(10):2566-74. [PudMed:21421757]
(296) Schneider S et al (2011). Complex cellular responses of Helicobacter pylori-colonized gastric adenocarcinoma cells. Infect Immun. 79(6):2362-71. [PudMed:21402757]
(297) Fontana MF et al (2011). Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent Legionella pneumophila. PLoS Pathog. 7(2):e1001289. [PudMed:21390206]
(298) Schuelein R et al (2011). Integrin-mediated type IV secretion by Helicobacter: what makes it tick. Trends Microbiol. 19(5):211-6. [PudMed:21371889]
(299) Terradot L et al (2011). Architecture of the Helicobacter pylori Cag-type IV secretion system. FEBS J. 278(8):1213-22. [PudMed:21352491]
(300) Fischer W (2011). Assembly and molecular mode of action of the Helicobacter pylori Cag type IV secretion apparatus. FEBS J. 278(8):1203-12. [PudMed:21352490]
(301) Tegtmeyer N et al (2011). Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis. FEBS J. 278(8):1190-202. [PudMed:21352489]
(302) Engel P et al (2011). Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella. PLoS Genet. 7(2):e1001296. [PudMed:21347280]
(303) Hervet E et al (2011). Protein kinase LegK2 is a type IV secretion system effector involved in endoplasmic reticulum recruitment and intracellular replication of Legionella pneumophila. Infect Immun. 79(5):1936-50. [PudMed:21321072]
(304) Tegtmeyer N et al (2011). Role of Abl and Src family kinases in actin-cytoskeletal rearrangements induced by the Helicobacter pylori CagA protein. Eur J Cell Biol. 90(11):880-90. [PudMed:21247656]
(305) Voth DE et al (2011). The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates. J Bacteriol. 193(7):1493-503. [PudMed:21216993]
(306) Palanivelu DV et al (2011). Fic domain-catalyzed adenylylation: insight provided by the structural analysis of the type IV secretion system effector BepA. Protein Sci. 20(3):492-9. [PudMed:21213248]
(307) Pelz C et al (2011). A novel inhibitory domain of Helicobacter pylori protein CagA reduces CagA effects on host cell biology. J Biol Chem. 286(11):8999-9008. [PudMed:21212271]
(308) Patra R et al (2011). Intact cag pathogenicity island of Helicobacter pylori without disease association in Kolkata, India. Int J Med Microbiol. 301(4):293-302. [PudMed:21195664]
(309) Scheidegger F et al (2011). The Bartonella henselae VirB/Bep system interferes with vascular endothelial growth factor (VEGF) signalling in human vascular endothelial cells. Cell Microbiol. 13(3):419-31. [PudMed:21044238]
(310) Truttmann MC et al (2011). Combined action of the type IV secretion effector proteins BepC and BepF promotes invasome formation of Bartonella henselae on endothelial and epithelial cells. Cell Microbiol. 13(2):284-99. [PudMed:20964799]
(311) Hatakeyama M (2011). Anthropological and clinical implications for the structural diversity of the Helicobacter pylori CagA oncoprotein. Cancer Sci. 102(1):36-43. [PudMed:20942897]
(312) Arnold IC et al (2011). Tolerance rather than immunity protects from Helicobacter pylori-induced gastric preneoplasia. Gastroenterology. 140(1):199-209. [PudMed:20600031]
(313) Zhong Q et al (2011). Characterization of peptidoglycan hydrolase in Cag pathogenicity island of Helicobacter pylori. Mol Biol Rep. 38(1):503-9. [PudMed:20358296]
(314) Backert S et al (2010). PKA-mediated phosphorylation of EPEC-Tir at serine residues 434 and 463: A novel pathway in regulating Rac1 GTPase function. Gut Microbes. 1(2):94-99. [PudMed:21326916]
(315) Lang S et al (2010). Molecular recognition determinants for type IV secretion of diverse families of conjugative relaxases. Mol Microbiol. 78(6):1539-55. [PudMed:21143323]
(316) Chen C et al (2010). Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc Natl Acad Sci U S A. 107(50):21755-60. [PudMed:21098666]
(317) Molnar B et al (2010). Molecular pathogenesis of Helicobacter pylori infection: the role of bacterial virulence factors. Dig Dis. 28(4-5):604-8. [PudMed:21088410]
(318) Nakano N, Kubori T, Kinoshita M, Imada K, Nagai H (2010). Crystal structure of Legionella DotD: insights into the relationship between type IVB and type II/III secretion systems. PLoS Pathog. 6(10):e1001129. [PudMed:20949065]
(319) Luhrmann A et al (2010). Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proc Natl Acad Sci U S A. 107(44):18997-9001. [PudMed:20944063]
(320) Schroeder GN et al (2010). Legionella pneumophila strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Icm secretion system effector proteins. J Bacteriol. 192(22):6001-16. [PudMed:20833813]
(321) Olbermann P et al (2010). A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet. 6(8):e1001069. [PudMed:20808891]
(322) Hutton ML et al (2010). Helicobacter pylori exploits cholesterol-rich microdomains for induction of NF-kappaB-dependent responses and peptidoglycan delivery in epithelial cells. Infect Immun. 78(11):4523-31. [PudMed:20713621]
(323) Rikihisa Y et al (2010). Type IV secretion in the obligatory intracellular bacterium Anaplasma phagocytophilum. Cell Microbiol. 12(9):1213-21. [PudMed:20670295]
(324) Hayashi T et al (2010). Proteomic analysis of growth phase-dependent expression of Legionella pneumophila proteins which involves regulation of bacterial virulence traits. PLoS One. 5(7):e11718. [PudMed:20661449]
(325) Price CT et al (2010). Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila. J Exp Med. 207(8):1713-26. [PudMed:20660614]
(326) Müller MP, Peters H, Blümer J, Blankenfeldt W, Goody RS, Itzen A (2010). The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science. 329(5994):946-9. [PudMed:20651120]
(327) Wallden K et al (2010). Type IV secretion systems: versatility and diversity in function. Cell Microbiol. 12(9):1203-12. [PudMed:20642798]
(328) Huang B et al (2010). Anaplasma phagocytophilum APH_0032 is expressed late during infection and localizes to the pathogen-occupied vacuolar membrane. Microb Pathog. 49(5):273-84. [PudMed:20600793]
(329) Backert S et al (2010). The versatility of Helicobacter pylori CagA effector protein functions: The master key hypothesis. Helicobacter. 15(3):163-76. [PudMed:20557357]
(330) Ensminger AW, Isberg RR (2010). E3 ubiquitin ligase activity and targeting of BAT3 by multiple Legionella pneumophila translocated substrates. Infect Immun. 78(9):3905-19. [PudMed:20547746]
(331) Lurie-Weinberger MN et al (2010). The origins of eukaryotic-like proteins in Legionella pneumophila. Int J Med Microbiol. 300(7):470-81. [PudMed:20537944]
(332) Farnbacher M et al (2010). Sequencing, annotation, and comparative genome analysis of the gerbil-adapted Helicobacter pylori strain B8. BMC Genomics. 11:335. [PudMed:20507619]
(333) Murata-Kamiya N et al (2010). Helicobacter pylori exploits host membrane phosphatidylserine for delivery, localization, and pathophysiological action of the CagA oncoprotein. Cell Host Microbe. 7(5):399-411. [PudMed:20478541]
(334) Quebatte M et al (2010). The BatR/BatS two-component regulatory system controls the adaptive response of Bartonella henselae during human endothelial cell infection. J Bacteriol. 192(13):3352-67. [PudMed:20418395]
(335) Mane SP et al (2010). Host-interactive genes in Amerindian Helicobacter pylori diverge from their Old World homologs and mediate inflammatory responses. J Bacteriol. 192(12):3078-92. [PudMed:20400544]
(336) Lee IO, Kim JH, Choi YJ, Pillinger MH, Kim SY, Blaser MJ, Lee YC (2010). Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells. J Biol Chem. 285(21):16042-50. [PudMed:20348091]
(337) Lomma M, Dervins-Ravault D, Rolando M, Nora T, Newton HJ, Sansom FM, Sahr T, Gomez-Valero L, Jules M, Hartland EL, Buchrieser C (2010). The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell Microbiol. 12(9):1272-91. [PudMed:20345489]
(338) Xu L et al (2010). Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog. 6(3):e1000822. [PudMed:20333253]
(339) Zhu Y et al (2010). Structural mechanism of host Rab1 activation by the bifunctional Legionella type IV effector SidM/DrrA. Proc Natl Acad Sci U S A. 107(10):4699-704. [PudMed:20176951]
(340) Cazalet C et al (2010). Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires' disease. PLoS Genet. 6(2):e1000851. [PudMed:20174605]
(341) Niu H et al (2010). Anaplasma phagocytophilum Ats-1 is imported into host cell mitochondria and interferes with apoptosis induction. PLoS Pathog. 6(2):e1000774. [PudMed:20174550]
(342) Pitzschke A et al (2010). New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J. 29(6):1021-32. [PudMed:20150897]
(343) Losick VP, Haenssler E, Moy MY, Isberg RR (2010). LnaB: a Legionella pneumophila activator of NF-kappaB. Cell Microbiol. 12(8):1083-97. [PudMed:20148897]
(344) Aguilar J et al (2010). Agrobacterium type IV secretion system and its substrates form helical arrays around the circumference of virulence-induced cells. Proc Natl Acad Sci U S A. 107(8):3758-63. [PudMed:20133577]
(345) Rikihisa Y et al (2010). Anaplasma phagocytophilum and Ehrlichia chaffeensis type IV secretion and Ank proteins. Curr Opin Microbiol. 13(1):59-66. [PudMed:20053580]
(346) Hurtado-Guerrero R, Zusman T, Pathak S, Ibrahim AF, Shepherd S, Prescott A, Segal G, van Aalten DM (2010). Molecular mechanism of elongation factor 1A inhibition by a Legionella pneumophila glycosyltransferase. Biochem J. 426(3):281-92. [PudMed:20030628]
(347) Habyarimana F, Price CT, Santic M, Al-Khodor S, Kwaik YA (2010). Molecular characterization of the Dot/Icm-translocated AnkH and AnkJ eukaryotic-like effectors of Legionella pneumophila. Infect Immun. 78(3):1123-34. [PudMed:20028808]
(348) Nesić D, Miller MC, Quinkert ZT, Stein M, Chait BT, Stebbins CE. (2010). Helicobacter pylori CagA inhibits PAR1-MARK family kinases by mimicking host substrates. Nat Struct Mol Biol. 17(1):130-2. [PudMed:19966800]
(349) Gorkiewicz G et al (2010). A genomic island defines subspecies-specific virulence features of the host-adapted pathogen Campylobacter fetus subsp. venerealis. J Bacteriol. 192(2):502-17. [PudMed:19897645]
(350) Amer AO (2010). Modulation of caspases and their non-apoptotic functions by Legionella pneumophila. Cell Microbiol. 12(2):140-7. [PudMed:19863553]
(351) Rikihisa Y (2010). Molecular events involved in cellular invasion by Ehrlichia chaffeensis and Anaplasma phagocytophilum. Vet Parasitol. 167(2-4):155-66. [PudMed:19836896]
(352) Ream W (2009). Agrobacterium tumefaciens and A. rhizogenes use different proteins to transport bacterial DNA into the plant cell nucleus. Microb Biotechnol. 2(4):416-27. [PudMed:21255274]
(353) Schoebel S, Oesterlin LK, Blankenfeldt W, Goody RS, Itzen A (2009). RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol Cell. 36(6):1060-72. [PudMed:20064470]
(354) Allison CC et al (2009). Helicobacter pylori induces MAPK phosphorylation and AP-1 activation via a NOD1-dependent mechanism. J Immunol. 183(12):8099-109. [PudMed:20007577]
(355) Jimenez-Soto LF et al (2009). Helicobacter pylori type IV secretion apparatus exploits beta1 integrin in a novel RGD-independent manner. PLoS Pathog. 5(12):e1000684. [PudMed:19997503]
(356) Alvarez-Martinez CE et al (2009). Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev. 73(4):775-808. [PudMed:19946141]
(357) Monroe KM, McWhirter SM, Vance RE (2009). Identification of host cytosolic sensors and bacterial factors regulating the type I interferon response to Legionella pneumophila. PLoS Pathog. 5(11):e1000665. [PudMed:19936053]
(358) Lamb A, Yang XD, Tsang YH, Li JD, Higashi H, Hatakeyama M, Peek RM, Blanke SR, Chen LF (2009). Helicobacter pylori CagA activates NF-kappaB by targeting TAK1 for TRAF6-mediated Lys 63 ubiquitination. EMBO Rep. 10(11):1242-9. [PudMed:19820695]
(359) van Kregten M et al (2009). Agrobacterium-mediated T-DNA transfer and integration by minimal VirD2 consisting of the relaxase domain and a type IV secretion system translocation signal. Mol Plant Microbe Interact. 22(11):1356-65. [PudMed:19810805]
(360) Oldani A et al (2009). Helicobacter pylori counteracts the apoptotic action of its VacA toxin by injecting the CagA protein into gastric epithelial cells. PLoS Pathog. 5(10):e1000603. [PudMed:19798427]
(361) Zhang R et al (2009). Two type IV secretion systems with different functions in Burkholderia cenocepacia K56-2. Microbiology. 155(Pt 12):4005-13. [PudMed:19744991]
(362) Urwyler S et al (2009). Endosomal and secretory markers of the Legionella-containing vacuole. Commun Integr Biol. 2(2):107-9. [PudMed:19704903]
(363) Lim JW, Kim KH, Kim H (2009). alphaPix interacts with Helicobacter pylori CagA to induce IL-8 expression in gastric epithelial cells. Scand J Gastroenterol. 44(10):1166-72. [PudMed:19672789]
(364) Ge J et al (2009). A Legionella type IV effector activates the NF-kappaB pathway by phosphorylating the IkappaB family of inhibitors. Proc Natl Acad Sci U S A. 106(33):13725-30. [PudMed:19666608]
(365) Rambow-Larsen AA et al (2009). Brucella regulators: self-control in a hostile environment. Trends Microbiol. 17(8):371-7. [PudMed:19660951]
(366) Minnick MF et al (2009). Pestilence, persistence and pathogenicity: infection strategies of Bartonella. Future Microbiol. 4(6):743-58. [PudMed:19659429]
(367) Oliveira MJ et al (2009). CagA associates with c-Met, E-cadherin, and p120-catenin in a multiproteic complex that suppresses Helicobacter pylori-induced cell-invasive phenotype. J Infect Dis. 200(5):745-55. [PudMed:19604117]
(368) Burstein D et al (2009). Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog. 5(7):e1000508. [PudMed:19593377]
(369) Franco IS et al (2009). The perplexing functions and surprising origins of Legionella pneumophila type IV secretion effectors. Cell Microbiol. 11(10):1435-43. [PudMed:19563462]
(370) Rikihisa Y et al (2009). Type IV secretion system of Anaplasma phagocytophilum and Ehrlichia chaffeensis. Ann N Y Acad Sci. 1166:106-11. [PudMed:19538269]
(371) Llosa M et al (2009). Bacterial type IV secretion systems in human disease. Mol Microbiol. 73(2):141-51. [PudMed:19508287]
(372) Degtyar E et al (2009). A Legionella effector acquired from protozoa is involved in sphingolipids metabolism and is targeted to the host cell mitochondria. Cell Microbiol. 11(8):1219-35. [PudMed:19438520]
(373) Brandt S et al (2009). Dual infection system identifies a crucial role for PKA-mediated serine phosphorylation of the EPEC-Tir-injected effector protein in regulating Rac1 function. Cell Microbiol. 11(8):1254-71. [PudMed:19438518]
(374) Brandt S et al (2009). Helicobacter pylori activates protein kinase C delta to control Raf in MAP kinase signalling: role in AGS epithelial cell scattering and elongation. Cell Motil Cytoskeleton. 66(10):874-92. [PudMed:19437514]
(375) Delpino MV et al (2009). Differential composition of culture supernatants from wild-type Brucella abortus and its isogenic virB mutants. Arch Microbiol. 191(7):571-81. [PudMed:19436993]
(376) Scheidegger F et al (2009). Distinct activities of Bartonella henselae type IV secretion effector proteins modulate capillary-like sprout formation. Cell Microbiol. 11(7):1088-101. [PudMed:19416269]
(377) Voth DE et al (2009). The Coxiella burnetii ankyrin repeat domain-containing protein family is heterogeneous, with C-terminal truncations that influence Dot/Icm-mediated secretion. J Bacteriol. 191(13):4232-42. [PudMed:19411324]
(378) Rasis M et al (2009). The LetA-RsmYZ-CsrA regulatory cascade, together with RpoS and PmrA, post-transcriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectors. Mol Microbiol. 72(4):995-1010. [PudMed:19400807]
(379) Shen X et al (2009). Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response. Cell Microbiol. 11(6):911-26. [PudMed:19386084]
(380) Rhomberg TA et al (2009). A translocated protein of Bartonella henselae interferes with endocytic uptake of individual bacteria and triggers uptake of large bacterial aggregates via the invasome. Cell Microbiol. 11(6):927-45. [PudMed:19302579]
(381) Chomel BB et al (2009). Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors. Vet Res. 40(2):29. [PudMed:19284965]
(382) Hatakeyama M (2009). Helicobacter pylori and gastric carcinogenesis. J Gastroenterol. 44(4):239-48. [PudMed:19271114]
(383) Shrivastava R et al (2009). Virulence factor secretion and translocation by Bordetella species. Curr Opin Microbiol. 12(1):88-93. [PudMed:19186097]
(384) Ninio S et al (2009). A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles. PLoS Pathog. 5(1):e1000278. [PudMed:19165328]
(385) Suzuki M, Mimuro H, Kiga K, Fukumatsu M, Ishijima N, Morikawa H, Nagai S, Koyasu S, Gilman RH, Kersulyte D, Berg DE, Sasakawa C (2009). Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe. 5(1):23-34. [PudMed:19154985]
(386) Voth DE et al (2009). Coxiella type IV secretion and cellular microbiology. Curr Opin Microbiol. 12(1):74-80. [PudMed:19144560]
(387) Angelini A et al (2009). Expression of Helicobacter pylori CagA domains by library-based construct screening. FEBS J. 276(3):816-24. [PudMed:19143840]
(388) Ehsani S et al (2009). Turning on the spotlight--using light to monitor and characterize bacterial effector secretion and translocation. Curr Opin Microbiol. 12(1):24-30. [PudMed:19135407]
(389) Brombacher E et al (2009). Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J Biol Chem. 284(8):4846-56. [PudMed:19095644]
(390) Krueger S et al (2009). Regulation of cathepsin X overexpression in H. pylori-infected gastric epithelial cells and macrophages. J Pathol. 217(4):581-8. [PudMed:19090485]
(391) Tegtmeyer N et al (2009). Importance of EGF receptor, HER2/Neu and Erk1/2 kinase signalling for host cell elongation and scattering induced by the Helicobacter pylori CagA protein: antagonistic effects of the vacuolating cytotoxin VacA. Cell Microbiol. 11(3):488-505. [PudMed:19046339]
(392) Bauer B, Bartfeld S, Meyer TF (2009). H. pylori selectively blocks EGFR endocytosis via the non-receptor kinase c-Abl and CagA. Cell Microbiol. 11(1):156-69. [PudMed:19016792]
(393) Heidtman M, Chen EJ, Moy MY, Isberg RR (2009). Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell Microbiol. 11(2):230-48. [PudMed:19016775]
(394) Pulliainen AT et al (2009). Bartonella henselae: subversion of vascular endothelial cell functions by translocated bacterial effector proteins. Int J Biochem Cell Biol. 41(3):507-10. [PudMed:19010441]
(395) Urwyler S et al (2009). Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic. 10(1):76-87. [PudMed:18980612]
(396) de Jong MF et al (2008). Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Mol Microbiol. 70(6):1378-96. [PudMed:19019140]
(397) Al-Khodor S et al (2008). A Dot/Icm-translocated ankyrin protein of Legionella pneumophila is required for intracellular proliferation within human macrophages and protozoa. Mol Microbiol. 70(4):908-23. [PudMed:18811729]
(398) Tiaden A et al (2008). Synergistic contribution of the Legionella pneumophila lqs genes to pathogen-host interactions. J Bacteriol. 190(22):7532-47. [PudMed:18805977]
(399) Backert S et al (2008). VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems. Trends Microbiol. 16(9):409-13. [PudMed:18706815]
(400) Zusman T et al (2008). Identification of a hypervariable region containing new Legionella pneumophila Icm/Dot translocated substrates by using the conserved icmQ regulatory signature. Infect Immun. 76(10):4581-91. [PudMed:18694969]
(401) Ragaz C et al (2008). The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol. 10(12):2416-33. [PudMed:18673369]
(402) de Felipe KS, Glover RT, Charpentier X, Anderson OR, Reyes M, Pericone CD, Shuman HA (2008). Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog. 4(8):e1000117. [PudMed:18670632]
(403) Pan X et al (2008). Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science. 320(5883):1651-4. [PudMed:18566289]
(404) Dehio C (2008). Infection-associated type IV secretion systems of Bartonella and their diverse roles in host cell interaction. Cell Microbiol. 10(8):1591-8. [PudMed:18489724]
(405) Botham CM et al (2008). A transgenic Drosophila model demonstrates that the Helicobacter pylori CagA protein functions as a eukaryotic Gab adaptor. PLoS Pathog. 4(5):e1000064. [PudMed:18483552]
(406) Mimuro H et al (2008). Control of epithelial cell structure and developmental fate: lessons from Helicobacter pylori. Bioessays. 30(6):515-20. [PudMed:18478526]
(407) Lai CH et al (2008). Cholesterol depletion reduces Helicobacter pylori CagA translocation and CagA-induced responses in AGS cells. Infect Immun. 76(7):3293-303. [PudMed:18443091]
(408) Backert S et al (2008). Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol. 10(8):1573-81. [PudMed:18410539]
(409) Shin S et al (2008). Host cell processes that influence the intracellular survival of Legionella pneumophila. Cell Microbiol. 10(6):1209-20. [PudMed:18363881]
(410) Snider JL et al (2008). The beta1 integrin activates JNK independent of CagA, and JNK activation is required for Helicobacter pylori CagA+-induced motility of gastric cancer cells. J Biol Chem. 283(20):13952-63. [PudMed:18356158]
(411) Grange W et al (2008). VirE2: a unique ssDNA-compacting molecular machine. PLoS Biol. 6(2):e44. [PudMed:18303950]
(412) Kubori T et al (2008). Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol. 67(6):1307-19. [PudMed:18284575]
(413) Belyi Y, Tabakova I, Stahl M, Aktories K (2008). Lgt: a family of cytotoxic glucosyltransferases produced by Legionella pneumophila. J Bacteriol. 190(8):3026-35. [PudMed:18281405]
(414) Habyarimana F, Al-Khodor S, Kalia A, Graham JE, Price CT, Garcia MT, Kwaik YA (2008). Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages. Environ Microbiol. 10(6):1460-74. [PudMed:18279343]
(415) Salcedo SP, Marchesini MI, Lelouard H, Fugier E, Jolly G, Balor S, Muller A, Lapaque N, Demaria O, Alexopoulou L, Comerci DJ, Ugalde RA, Pierre P, Gorvel JP (2008). Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1. PLoS Pathog. 4(2):e21. [PudMed:18266466]
(416) Hatakeyama M (2008). SagA of CagA in Helicobacter pylori pathogenesis. Curr Opin Microbiol. 11(1):30-7. [PudMed:18243773]
(417) Franke R et al (2008). Host-pathogen systems biology: logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-Met signal transduction. BMC Syst Biol. 2:4. [PudMed:18194572]
(418) Ohnishi N et al (2008). Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci U S A. 105(3):1003-8. [PudMed:18192401]
(419) Altman E et al (2008). The response regulator CpxR directly regulates expression of several Legionella pneumophila icm/dot components as well as new translocated substrates. J Bacteriol. 190(6):1985-96. [PudMed:18192394]
(420) Cambronne ED et al (2007). The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation. PLoS Pathog. 3(12):e188. [PudMed:18069892]
(421) Guo M et al (2007). Recruitment of conjugative DNA transfer substrate to Agrobacterium type IV secretion apparatus. Proc Natl Acad Sci U S A. 104(50):20019-24. [PudMed:18056647]
(422) Saenz HL et al (2007). Genomic analysis of Bartonella identifies type IV secretion systems as host adaptability factors. Nat Genet. 39(12):1469-76. [PudMed:18037886]
(423) Mimuro H, Suzuki T, Nagai S, Rieder G, Suzuki M, Nagai T, Fujita Y, Nagamatsu K, Ishijima N, Koyasu S, Haas R, Sasakawa C (2007). Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. Cell Host Microbe. 2(4):250-63. [PudMed:18005743]
(424) Ingmundson A, Delprato A, Lambright DG, Roy CR (2007). Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature. 450(7168):365-9. [PudMed:17952054]
(425) Kwok T et al (2007). Helicobacter exploits integrin for type IV secretion and kinase activation. Nature. 449(7164):862-6. [PudMed:17943123]
(426) Alvi A et al (2007). Microevolution of Helicobacter pylori type IV secretion systems in an ulcer disease patient over a ten-year period. J Clin Microbiol. 45(12):4039-43. [PudMed:17942650]
(427) Guo M et al (2007). Agrobacterium VirD2-binding protein is involved in tumorigenesis and redundantly encoded in conjugative transfer gene clusters. Mol Plant Microbe Interact. 20(10):1201-12. [PudMed:17918622]
(428) Pattis I et al (2007). The Helicobacter pylori CagF protein is a type IV secretion chaperone-like molecule that binds close to the C-terminal secretion signal of the CagA effector protein. Microbiology. 153(Pt 9):2896-909. [PudMed:17768234]
(429) Ninio S et al (2007). Effector proteins translocated by Legionella pneumophila: strength in numbers. Trends Microbiol. 15(8):372-80. [PudMed:17632005]
(430) Lin M et al (2007). Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection. Cell Microbiol. 9(11):2644-57. [PudMed:17587335]
(431) Katoh M (2007). Dysregulation of stem cell signaling network due to germline mutation, SNP, Helicobacter pylori infection, epigenetic change and genetic alteration in gastric cancer. Cancer Biol Ther. 6(6):832-9. [PudMed:17568183]
(432) Loh JT et al (2007). Regulation of Helicobacter pylori cagA expression in response to salt. Cancer Res. 67(10):4709-15. [PudMed:17510398]
(433) Saadat I, Higashi H, Obuse C, Umeda M, Murata-Kamiya N, Saito Y, Lu H, Ohnishi N, Azuma T, Suzuki A, Ohno S, Hatakeyama M (2007). Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature. 447(7142):330-3. [PudMed:17507984]
(434) Reyes-Leon A et al (2007). Heterogeneity in the activity of Mexican Helicobacter pylori strains in gastric epithelial cells and its association with diversity in the cagA gene. Infect Immun. 75(7):3445-54. [PudMed:17438024]
(435) Tammer I et al (2007). Activation of Abl by Helicobacter pylori: a novel kinase for CagA and crucial mediator of host cell scattering. Gastroenterology. 132(4):1309-19. [PudMed:17408661]
(436) Baek HY et al (2007). Interaction between the Helicobacter pylori CagA and alpha-Pix in gastric epithelial AGS cells. Ann N Y Acad Sci. 1096:18-23. [PudMed:17405911]
(437) Voth DE et al (2007). Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Cell Microbiol. 9(4):829-40. [PudMed:17381428]
(438) Hubber AM et al (2007). Symbiosis-induced cascade regulation of the Mesorhizobium loti R7A VirB/D4 type IV secretion system. Mol Plant Microbe Interact. 20(3):255-61. [PudMed:17378428]
(439) Chen J et al (2007). Host cell-dependent secretion and translocation of the LepA and LepB effectors of Legionella pneumophila. Cell Microbiol. 9(7):1660-71. [PudMed:17371403]
(440) Banga S et al (2007). Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc Natl Acad Sci U S A. 104(12):5121-6. [PudMed:17360363]
(441) Zusman T et al (2007). The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii. Mol Microbiol. 63(5):1508-23. [PudMed:17302824]
(442) Fu HY et al (2007). East Asian-type Helicobacter pylori cytotoxin-associated gene A protein has a more significant effect on growth of rat gastric mucosal cells than the Western type. J Gastroenterol Hepatol. 22(3):355-62. [PudMed:17295767]
(443) Angot A et al (2007). Exploitation of eukaryotic ubiquitin signaling pathways by effectors translocated by bacterial type III and type IV secretion systems. PLoS Pathog. 3(1):e3. [PudMed:17257058]
(444) IJdo JW, Carlson AC, Kennedy EL (2007). Anaplasma phagocytophilum AnkA is tyrosine-phosphorylated at EPIYA motifs and recruits SHP-1 during early infection. Cell Microbiol. 9(5):1284-96. [PudMed:17250594]
(445) Murata-Kamiya N, Kurashima Y, Teishikata Y, Yamahashi Y, Saito Y, Higashi H, Aburatani H, Akiyama T, Peek RM Jr, Azuma T, Hatakeyama M (2007). Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene. 26(32):4617-26. [PudMed:17237808]
(446) Moese S, Selbach M, Brinkmann V, Karlas A, Haimovich B, Backert S, Meyer TF (2007). The Helicobacter pylori CagA protein disrupts matrix adhesion of gastric epithelial cells by dephosphorylation of vinculin. Cell Microbiol. 9(5):1148-61. [PudMed:17217431]
(447) Bourzac KM et al (2007). Helicobacter pylori CagA induces AGS cell elongation through a cell retraction defect that is independent of Cdc42, Rac1, and Arp2/3. Infect Immun. 75(3):1203-13. [PudMed:17194805]
(448) Poppe M et al (2007). Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility. Oncogene. 26(24):3462-72. [PudMed:17160020]
(449) Handa O et al (2007). CagA protein of Helicobacter pylori: a hijacker of gastric epithelial cell signaling. Biochem Pharmacol. 73(11):1697-702. [PudMed:17134680]
(450) Medini D et al (2006). Protein homology network families reveal step-wise diversification of Type III and Type IV secretion systems. PLoS Comput Biol. 2(12):e173. [PudMed:17140285]
(451) Schmid MC et al (2006). A translocated bacterial protein protects vascular endothelial cells from apoptosis. PLoS Pathog. 2(11):e115. [PudMed:17121462]
(452) Hatakeyama M (2006). The role of Helicobacter pylori CagA in gastric carcinogenesis. Int J Hematol. 84(4):301-8. [PudMed:17118755]
(453) Belyi Y, Niggeweg R, Opitz B, Vogelsgesang M, Hippenstiel S, Wilm M, Aktories K (2006). Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc Natl Acad Sci U S A. 103(45):16953-8. [PudMed:17068130]
(454) Hilleringmann M et al (2006). Inhibitors of Helicobacter pylori ATPase Cagalpha block CagA transport and cag virulence. Microbiology. 152(Pt 10):2919-30. [PudMed:17005973]
(455) Oliveira MJ et al (2006). Helicobacter pylori induces gastric epithelial cell invasion in a c-Met and type IV secretion system-dependent manner. J Biol Chem. 281(46):34888-96. [PudMed:16990273]
(456) Garcia JT et al (2006). Measurement of effector protein injection by type III and type IV secretion systems by using a 13-residue phosphorylatable glycogen synthase kinase tag. Infect Immun. 74(10):5645-57. [PudMed:16988240]
(457) Shibata W et al (2006). CagA protein secreted by the intact type IV secretion system leads to gastric epithelial inflammation in the Mongolian gerbil model. J Pathol. 210(3):306-14. [PudMed:16933206]
(458) Hatakeyama M et al (2006). Pathogenesis of Helicobacter pylori infection. Helicobacter. 11 Suppl 1:14-20. [PudMed:16925606]
(459) Murata T et al (2006). The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol. 8(9):971-7. [PudMed:16906144]
(460) Machner MP et al (2006). Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell. 11(1):47-56. [PudMed:16824952]
(461) Busler VJ et al (2006). Protein-protein interactions among Helicobacter pylori cag proteins. J Bacteriol. 188(13):4787-800. [PudMed:16788188]
(462) Katoh M et al (2006). FGF signaling network in the gastrointestinal tract (review). Int J Oncol. 29(1):163-8. [PudMed:16773196]
(463) Cambronne ED et al (2006). Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems. Traffic. 7(8):929-39. [PudMed:16734660]
(464) VanRheenen SM et al (2006). Members of a Legionella pneumophila family of proteins with ExoU (phospholipase A) active sites are translocated to target cells. Infect Immun. 74(6):3597-606. [PudMed:16714592]
(465) Weber SS et al (2006). Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog. 2(5):e46. [PudMed:16710455]
(466) Bourzac KM et al (2006). The Helicobacter pylori cag pathogenicity island protein CagN is a bacterial membrane-associated protein that is processed at its C terminus. Infect Immun. 74(5):2537-43. [PudMed:16622188]
(467) Robinson CG, Roy CR (2006). Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila. Cell Microbiol. 8(5):793-805. [PudMed:16611228]
(468) Hatakeyama M (2006). Helicobacter pylori CagA -- a bacterial intruder conspiring gastric carcinogenesis. Int J Cancer. 119(6):1217-23. [PudMed:16557568]
(469) Backert S et al (2006). Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol. 9(2):207-17. [PudMed:16529981]
(470) Hohlfeld S et al (2006). A C-terminal translocation signal is necessary, but not sufficient for type IV secretion of the Helicobacter pylori CagA protein. Mol Microbiol. 59(5):1624-37. [PudMed:16469000]
(471) Shi C et al (2006). The Legionella pneumophila global regulatory protein LetA affects DotA and Mip. Int J Med Microbiol. 296(1):15-24. [PudMed:16423685]
(472) Couturier MR et al (2006). Interaction with CagF is required for translocation of CagA into the host via the Helicobacter pylori type IV secretion system. Infect Immun. 74(1):273-81. [PudMed:16368981]
(473) Krueger S et al (2006). Helicobacter pylori encoding the pathogenicity island activates matrix metalloproteinase 1 in gastric epithelial cells via JNK and ERK. J Biol Chem. 281(5):2868-75. [PudMed:16321971]
(474) Walker DH et al (2005). Progress in rickettsial genome analysis from pioneering of Rickettsia prowazekii to the recent Rickettsia typhi. Ann N Y Acad Sci. 1063:13-25. [PudMed:16481486]
(475) Hatakeyama M et al (2005). Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Cancer Sci. 96(12):835-43. [PudMed:16367902]
(476) Wu H et al (2005). Intrabacterial proton-dependent CagA transport system in Helicobacter pylori. J Med Microbiol. 54(Pt 12):1117-25. [PudMed:16278423]
(477) Suzuki M, Mimuro H, Suzuki T, Park M, Yamamoto T, Sasakawa C (2005). Interaction of CagA with Crk plays an important role in Helicobacter pylori-induced loss of gastric epithelial cell adhesion. J Exp Med. 202(9):1235-47. [PudMed:16275761]
(478) de Felipe KS et al (2005). Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J Bacteriol. 187(22):7716-26. [PudMed:16267296]
(479) Bagnoli F et al (2005). Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. Proc Natl Acad Sci U S A. 102(45):16339-44. [PudMed:16258069]
(480) Baron C (2005). From bioremediation to biowarfare: on the impact and mechanism of type IV secretion systems. FEMS Microbiol Lett. 253(2):163-70. [PudMed:16239080]
(481) Cascales E et al (2005). Agrobacterium tumefaciens oncogenic suppressors inhibit T-DNA and VirE2 protein substrate binding to the VirD4 coupling protein. Mol Microbiol. 58(2):565-79. [PudMed:16194240]
(482) Naumann M (2005). Pathogenicity island-dependent effects of Helicobacter pylori on intracellular signal transduction in epithelial cells. Int J Med Microbiol. 295(5):335-41. [PudMed:16173500]
(483) Christie PJ et al (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol. 59:451-85. [PudMed:16153176]
(484) Backert S et al (2005). Tyrosine-phosphorylated bacterial effector proteins: the enemies within. Trends Microbiol. 13(10):476-84. [PudMed:16099656]
(485) Christie PJ et al (2005). Structural and dynamic properties of bacterial type IV secretion systems (review). Mol Membr Biol. 22(1-2):51-61. [PudMed:16092524]
(486) Bauer B et al (2005). Analysis of cell type-specific responses mediated by the type IV secretion system of Helicobacter pylori. Infect Immun. 73(8):4643-52. [PudMed:16040977]
(487) Franco AT et al (2005). Activation of beta-catenin by carcinogenic Helicobacter pylori. Proc Natl Acad Sci U S A. 102(30):10646-51. [PudMed:16027366]
(488) Derre I et al (2005). LidA, a translocated substrate of the Legionella pneumophila type IV secretion system, interferes with the early secretory pathway. Infect Immun. 73(7):4370-80. [PudMed:15972532]
(489) Chang B, Kura F, Amemura-Maekawa J, Koizumi N, Watanabe H (2005). Identification of a novel adhesion molecule involved in the virulence of Legionella pneumophila. Infect Immun. 73(7):4272-80. [PudMed:15972519]
(490) Brandt S et al (2005). NF-kappaB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci U S A. 102(26):9300-5. [PudMed:15972330]
(491) Bourzac KM et al (2005). Helicobacter pylori-host cell interactions mediated by type IV secretion. Cell Microbiol. 7(7):911-9. [PudMed:15953024]
(492) Schroder G et al (2005). Virulence-associated type IV secretion systems of Bartonella. Trends Microbiol. 13(7):336-42. [PudMed:15935675]
(493) Rieder G et al (2005). Helicobacter pylori cag-type IV secretion system facilitates corpus colonization to induce precancerous conditions in Mongolian gerbils. Gastroenterology. 128(5):1229-42. [PudMed:15887107]
(494) Jakubowski SJ et al (2005). Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. J Bacteriol. 187(10):3486-95. [PudMed:15866936]
(495) Campodonico EM et al (2005). A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the Legionella pneumophila Dot/Icm system. Mol Microbiol. 56(4):918-33. [PudMed:15853880]
(496) Shohdy N, Efe JA, Emr SD, Shuman HA (2005). Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proc Natl Acad Sci U S A. 102(13):4866-71. [PudMed:15781869]
(497) Bardill JP et al (2005). IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol Microbiol. 56(1):90-103. [PudMed:15773981]
(498) Backert S et al (2005). Subproteomes of soluble and structure-bound Helicobacter pylori proteins analyzed by two-dimensional gel electrophoresis and mass spectrometry. Proteomics. 5(5):1331-45. [PudMed:15717330]
(499) Rieder G et al (2005). Interaction of Helicobacter pylori with host cells: function of secreted and translocated molecules. Curr Opin Microbiol. 8(1):67-73. [PudMed:15694859]
(500) Segal G et al (2005). The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiol Rev. 29(1):65-81. [PudMed:15652976]
(501) Vergunst AC et al (2005). Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci U S A. 102(3):832-7. [PudMed:15644442]
(502) Schulein R et al (2005). A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. Proc Natl Acad Sci U S A. 102(3):856-61. [PudMed:15642951]
(503) Nagai H et al (2005). A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci U S A. 102(3):826-31. [PudMed:15613486]
(504) Amor JC, Swails J, Zhu X, Roy CR, Nagai H, Ingmundson A, Cheng X, Kahn RA (2005). The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site. J Biol Chem. 280(2):1392-400. [PudMed:15520000]
(505) Viala J et al (2004). Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol. 5(11):1166-74. [PudMed:15489856]
(506) Hubber A et al (2004). Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol Microbiol. 54(2):561-74. [PudMed:15469524]
(507) Sugiyama T et al (2004). Helicobacter pylori infection and gastric cancer. Med Electron Microsc. 37(3):149-57. [PudMed:15449106]
(508) Selbach M et al (2004). The Helicobacter pylori CagA protein induces tyrosine dephosphorylation of ezrin. Proteomics. 4(10):2961-8. [PudMed:15378755]
(509) Hofman P et al (2004). Pathogenesis of Helicobacter pylori infection. Helicobacter. 9 Suppl 1:15-22. [PudMed:15347301]
(510) Hatakeyama M (2004). Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer. 4(9):688-94. [PudMed:15343275]
(511) Al-Ghoul L et al (2004). Analysis of the type IV secretion system-dependent cell motility of Helicobacter pylori-infected epithelial cells. Biochem Biophys Res Commun. 322(3):860-6. [PudMed:15336542]
(512) Sugiyama T (2004). Development of gastric cancer associated with Helicobacter pylori infection. Cancer Chemother Pharmacol. 54 Suppl 1:S12-20. [PudMed:15309509]
(513) Terradot L et al (2004). Biochemical characterization of protein complexes from the Helicobacter pylori protein interaction map: strategies for complex formation and evidence for novel interactions within type IV secretion systems. Mol Cell Proteomics. 3(8):809-19. [PudMed:15133060]
(514) Hodges LD et al (2004). Agrobacterium rhizogenes GALLS protein substitutes for Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2. J Bacteriol. 186(10):3065-77. [PudMed:15126468]
(515) Azuma T (2004). Helicobacter pylori CagA protein variation associated with gastric cancer in Asia. J Gastroenterol. 39(2):97-103. [PudMed:15069615]
(516) Cheung AM et al (2004). Analysis of relative levels of production of pertussis toxin subunits and Ptl proteins in Bordetella pertussis. Infect Immun. 72(4):2057-66. [PudMed:15039327]
(517) Chen J et al (2004). Legionella effectors that promote nonlytic release from protozoa. Science. 303(5662):1358-61. [PudMed:14988561]
(518) Luo ZQ, Isberg RR (2004). Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci U S A. 20;101(3):841-6. [PudMed:14715899]
(519) Rambow-Larsen AA et al (2004). Temporal expression of pertussis toxin and Ptl secretion proteins by Bordetella pertussis. J Bacteriol. 186(1):43-50. [PudMed:14679223]
(520) Rosen H (2004). Bacterial responses to neutrophil phagocytosis. Curr Opin Hematol. 11(1):1-6. [PudMed:14676620]
(521) Cascales E et al (2003). The versatile bacterial type IV secretion systems. Nat Rev Microbiol. 1(2):137-49. [PudMed:15035043]
(522) Umehara S et al (2003). Effects of Helicobacter pylori CagA protein on the growth and survival of B lymphocytes, the origin of MALT lymphoma. Oncogene. 22(51):8337-42. [PudMed:14614457]
(523) Ding Z et al (2003). The outs and ins of bacterial type IV secretion substrates. Trends Microbiol. 11(11):527-35. [PudMed:14607070]
(524) Vergunst AC et al (2003). Recognition of the Agrobacterium tumefaciens VirE2 translocation signal by the VirB/D4 transport system does not require VirE1. Plant Physiol. 133(3):978-88. [PudMed:14551327]
(525) Atmakuri K et al (2003). VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol Microbiol. 49(6):1699-713. [PudMed:12950931]
(526) Llosa M et al (2003). Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc Natl Acad Sci U S A. 100(18):10465-70. [PudMed:12925737]
(527) Azuma T et al (2003). The effects of cure of Helicobacter pylori infection on the signal transduction of gastric epithelial cells. Aliment Pharmacol Ther. 18 Suppl 1:39-44. [PudMed:12925139]
(528) Aras RA et al (2003). Natural variation in populations of persistently colonizing bacteria affect human host cell phenotype. J Infect Dis. 188(4):486-96. [PudMed:12898434]
(529) Duckely M et al (2003). The VirE2 protein of Agrobacterium tumefaciens: the Yin and Yang of T-DNA transfer. FEMS Microbiol Lett. 223(1):1-6. [PudMed:12798992]
(530) Tanaka J et al (2003). Structural definition on the surface of Helicobacter pylori type IV secretion apparatus. Cell Microbiol. 5(6):395-404. [PudMed:12780777]
(531) Nagai H et al (2003). Show me the substrates: modulation of host cell function by type IV secretion systems. Cell Microbiol. 5(6):373-83. [PudMed:12780775]
(532) Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S (2003). Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science. 300(5624):1430-4. [PudMed:12775840]
(533) Owen RJ et al (2003). Investigation of the biological relevance of Helicobacter pylori cagE locus diversity, presence of CagA tyrosine phosphorylation motifs and vacuolating cytotoxin genotype on IL-8 induction in gastric epithelial cells. FEMS Immunol Med Microbiol. 36(3):135-40. [PudMed:12738382]
(534) Churin Y, Al-Ghoul L, Kepp O, Meyer TF, Birchmeier W, Naumann M (2003). Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell Biol. 161(2):249-55. [PudMed:12719469]
(535) Escudero J et al (2003). VirD4-independent transformation by CloDF13 evidences an unknown factor required for the genetic colonization of plants via Agrobacterium. Mol Microbiol. 47(4):891-901. [PudMed:12581347]
(536) Schrammeijer B et al (2003). Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucleic Acids Res. 31(3):860-8. [PudMed:12560481]
(537) Yamazaki S et al (2003). The CagA protein of Helicobacter pylori is translocated into epithelial cells and binds to SHP-2 in human gastric mucosa. J Infect Dis. 187(2):334-7. [PudMed:12552462]
(538) Backert S et al (2002). Helicobacter pylori type IV secretion, host cell signalling and vaccine development. Keio J Med. 51 Suppl 2:6-14. [PudMed:12528929]
(539) Mimuro H, Suzuki T, Tanaka J, Asahi M, Haas R, Sasakawa C (2002). Grb2 is a key mediator of helicobacter pylori CagA protein activities. Mol Cell. 10(4):745-55. [PudMed:12419219]
(540) Guillemin K et al (2002). Cag pathogenicity island-specific responses of gastric epithelial cells to Helicobacter pylori infection. Proc Natl Acad Sci U S A. 99(23):15136-41. [PudMed:12411577]
(541) Fischer W et al (2002). Type IV secretion systems in pathogenic bacteria. Int J Med Microbiol. 292(3-4):159-68. [PudMed:12398207]
(542) Ding Z et al (2002). A novel cytology-based, two-hybrid screen for bacteria applied to protein-protein interaction studies of a type IV secretion system. J Bacteriol. 184(20):5572-82. [PudMed:12270814]
(543) Pantoja M et al (2002). Agrobacterium type IV secretion is a two-step process in which export substrates associate with the virulence protein VirJ in the periplasm. Mol Microbiol. 45(5):1325-35. [PudMed:12207700]
(544) Krall L et al (2002). Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A. 99(17):11405-10. [PudMed:12177443]
(545) Marshall B (2002). Helicobacter pylori: 20 years on. Clin Med. 2(2):147-52. [PudMed:11991099]
(546) Puls J et al (2002). Activation of Helicobacter pylori CagA by tyrosine phosphorylation is essential for dephosphorylation of host cell proteins in gastric epithelial cells. Mol Microbiol. 43(4):961-9. [PudMed:11936078]
(547) Stein M et al (2002). c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol. 43(4):971-80. [PudMed:11929545]
(548) Baron C et al (2002). Bacterial secrets of secretion: EuroConference on the biology of type IV secretion processes. Mol Microbiol. 43(5):1359-65. [PudMed:11918819]
(549) Sexton JA et al (2002). Type IVB secretion by intracellular pathogens. Traffic. 3(3):178-85. [PudMed:11886588]
(550) Go MF (2002). Review article: natural history and epidemiology of Helicobacter pylori infection. Aliment Pharmacol Ther. 16 Suppl 1:3-15. [PudMed:11849122]
(551) Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR. (2002). A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes.. Science. 295(5555):679-82. [PudMed:11809974]
(552) Selbach M et al (2002). Functional analysis of the Helicobacter pylori cag pathogenicity island reveals both VirD4-CagA-dependent and VirD4-CagA-independent mechanisms. Infect Immun. 70(2):665-71. [PudMed:11796597]
(553) Wessler S et al (2002). B-Raf/Rap1 signaling, but not c-Raf-1/Ras, induces the histidine decarboxylase promoter in Helicobacter pylori infection. FASEB J. 16(3):417-9. [PudMed:11790728]
(554) Selbach M et al (2002). Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem. 277(9):6775-8. [PudMed:11788577]
(555) Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M, Hatakeyama M (2002). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science. 295(5555):683-6. [PudMed:11743164]
(556) Fischer W et al (2001). Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol. 42(5):1337-48. [PudMed:11886563]
(557) Moese S et al (2001). Identification of a tyrosine-phosphorylated 35 kDa carboxy-terminal fragment (p35CagA) of the Helicobacter pylori CagA protein in phagocytic cells: processing or breakage. Proteomics. 1(4):618-29. [PudMed:11681214]
(558) Simone M et al (2001). The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system. Mol Microbiol. 41(6):1283-93. [PudMed:11580834]
(559) Sagulenko E et al (2001). Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J Bacteriol. 183(20):5813-25. [PudMed:11566978]
(560) Churin Y et al (2001). Pathogenicity island-dependent activation of Rho GTPases Rac1 and Cdc42 in Helicobacter pylori infection. Mol Microbiol. 40(4):815-23. [PudMed:11401689]
(561) Zhao Z et al (2001). Activities of virE1 and the VirE1 secretion chaperone in export of the multifunctional VirE2 effector via an Agrobacterium type IV secretion pathway. J Bacteriol. 183(13):3855-65. [PudMed:11395448]
(562) Dundon WG et al (2001). Virulence factors of Helicobacter pylori. Int J Med Microbiol. 290(8):647-58. [PudMed:11310443]
(563) Christie PJ (2001). Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol. 40(2):294-305. [PudMed:11309113]
(564) Stein M et al (2001). Interaction of Helicobacter pylori with professional phagocytes: role of the cag pathogenicity island and translocation, phosphorylation and processing of CagA. Cell Microbiol. 3(1):21-31. [PudMed:11207617]
(565) Censini S et al (2001). Cellular responses induced after contact with Helicobacter pylori. Curr Opin Microbiol. 4(1):41-6. [PudMed:11173032]
(566) Backert S et al (2000). Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol. 2(2):155-64. [PudMed:11207572]
(567) Christie PJ et al (2000). Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol. 8(8):354-60. [PudMed:10920394]
(568) Odenbreit S et al (2000). Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science. 287(5457):1497-500. [PudMed:10688800]
(569) Stein M et al (2000). Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci U S A. 97(3):1263-8. [PudMed:10655519]
(570) Deng W et al (1999). VirE1 is a specific molecular chaperone for the exported single-stranded-DNA-binding protein VirE2 in Agrobacterium. Mol Microbiol. 31(6):1795-807. [PudMed:10209751]