SecReT6 contains data from 896 references related to type VI secretion systems (T6SSs). Last Update: March 21st, 2015

Categories (Literatures contain following contents are categorized)
reviews experimental studies bioinformatics genome sequencing T6SS component T6SS effectors
effector translocation structural study regulation other

Number of references found for the 'component' category : 196

(1) Biswanath Jana, Chaya M Fridman, Eran Bosis, Dor Salomon (2019) A Modular Effector With a DNase Domain and a Marker for T6SS Substrates. Nat Commun. 10(1):3595. [PMID:31399579]
(2) Ledvina HE, Kelly KA, Eshraghi A, Plemel RL, Peterson SB, Lee B, Steele S, Adler M, Kawula TH, Merz AJ, Skerrett SJ, Celli J, Mougous JD (2018) A Phosphatidylinositol 3-Kinase Effector Alters Phagosomal Maturation to Promote Intracellular Growth of Francisella. Cell Host Microbe. 24(2):285-295.e8. [PMID:30057173]
(3) Nannan Wang, Jin Liu, Maoda Pang, Yafeng Wu, Furqan Awan, Mark R Liles, Chengping Lu, Yongjie Liu (2018) Diverse Roles of Hcp Family Proteins in the Environmental Fitness and Pathogenicity of Aeromonas Hydrophila Chinese Epidemic Strain NJ-35. Appl Microbiol Biotechnol. 102(16):7083-7095. [PMID:29862449]
(4) Ma J, Sun M, Pan Z, Song W, Lu C, Yao H (2018) Three Hcp homologs with divergent extended loop regions exhibit different functions in avian pathogenic Escherichia coli. Emerg Microbes Infect. 7(1):49. [PMID:29593238]
(5) Ringel PD, Hu D, Basler M (2017) The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer. Cell Rep. 21(13):3927-3940. [PMID:29281838]
(6) Ann Ray, Nika Schwartz, Marcela de Souza Santos, Junmei Zhang, Kim Orth, Dor Salomon (2017) Type VI Secretion System MIX-effectors Carry Both Antibacterial and Anti-Eukaryotic Activities. EMBO Rep.. 18(11):1978-1990. [PMID:28912123]
(7) Jiale Ma, Zihao Pan, Jinhu Huang, Min Sun, Chengping Lu, Huochun Yao (2017) The Hcp Proteins Fused With Diverse Extended-Toxin Domains Represent a Novel Pattern of Antibacterial Effectors in Type VI Secretion Systems. Virulence. 8(7):1189-1202. [PMID:28060574]
(8) Eshraghi A, Kim J, Walls AC, Ledvina HE, Miller CN, Ramsey KM, Whitney JC, Radey MC, Peterson SB, Ruhland BR, Tran BQ, Goo YA, Goodlett DR, Dove SL, Celli J, Veesler D, Mougous JD (2016) Secreted Effectors Encoded within and outside of the Francisella Pathogenicity Island Promote Intramacrophage Growth. Cell Host Microbe. 20(5):573-583. [PMID:27832588]
(9) Francesca R Cianfanelli, Juliana Alcoforado Diniz, Manman Guo, Virginia De Cesare, Matthias Trost, Sarah J Coulthurst (2016) VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System. PLoS Pathog. 12(6):e1005735. [PMID:27352036]
(10) Bondage DD, Lin JS, Ma LS, Kuo CH, Lai EM (2016) VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A. 113(27):E3931-40. [PMID:27313214]
(11) Basler M (2015) Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond B Biol Sci. 5-Oct. [PMID:26370934]
(12) Durand E et al (2015) Biogenesis and structure of a type VI secretion membrane core complex. Nature. 523(7562):555-60. [PMID:26200339]
(13) Ge P et al (2015) Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states. Nat Struct Mol Biol. doi: 10.1038/nsmb.2995. [PMID:25822993]
(14) Nguyen VS et al (2015) Inhibition of Type VI Secretion by an Anti-TssM Llama Nanobody. PLoS One. 10(3):e0122187. [PMID:25811612]
(15) Yu Y et al (2015) VgrG2 of type VI secretion system 2 of Vibrio parahaemolyticus induces autophagy in macrophages. Front Microbiol. 6:168. [PMID:25784905]
(16) Nguyen VS et al (2015) Production, crystallization and X-ray diffraction analysis of a complex between a fragment of the TssM T6SS protein and a camelid nanobody. Acta Crystallogr F Struct Biol Commun. 71(Pt 3):266-71. [PMID:25760699]
(17) Kudryashev M et al (2015) Structure of the Type VI Secretion System Contractile Sheath. Cell. 160(5):952-62. [PMID:25723169]
(18) Clemens DL et al (2015) Atomic Structure of T6SS Reveals Interlaced Array Essential to Function. Cell. 160(5):940-51. [PMID:25723168]
(19) Wang RY et al (2015) De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nat Methods. 12(4):335-338. [PMID:25707029]
(20) Lim YT et al (2015) Extended Loop Region of Hcp1 is Critical for the Assembly and Function of Type VI Secretion System in Burkholderia pseudomallei. Sci Rep. 5:8235. [PMID:25648885]
(21) Li J et al (2015) SecReT6: a web-based resource for type VI secretion systems found in bacteria. Environ Microbiol. doi: 10.1111/1462-2920.12794. [PMID:25640659]
(22) Olsen I (2015) Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis. doi:10.1007/s10096-015-2323-z. [PMID:25630538]
(23) Borgeaud S et al (2015) Bacterial evolution. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science. 347(6217):63-7. [PMID:25554784]
(24) Li J et al (2015) Generation and evaluation of virulence attenuated mutants of Edwardsiella tarda as vaccine candidates to combat edwardsiellosis in flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 43(1):175-80. [PMID:25541077]
(25) Ugarte-Ruiz M et al (2014) Prevalence of Type VI Secretion System in Spanish Campylobacter jejuni Isolates. Zoonoses Public Health. doi: 10.1111/zph.12176. [PMID:25496466]
(26) Song C et al (2014) The Rsm regulon of plant growth-promoting Pseudomonas fluorescens SS101: role of small RNAs in regulation of lipopeptide biosynthesis. Microb Biotechnol. 8(2):296-310. [PMID:25488342]
(27) Gueguen E et al (2014) Transcriptional Frameshifting Rescues Citrobacter rodentium Type VI Secretion by the Production of Two Length Variants from the Prematurely Interrupted tssM Gene. PLoS Genet. 10(12):e1004869. [PMID:25474156]
(28) Chang JH et al (2014) Crystal structure of the bacterial type VI secretion system component TssL from Vibrio cholerae. J Microbiol. 53(1):32-7. [PMID:25471186]
(29) Shao S et al (2014) Phylogenomics characterization of a highly virulent Edwardsiella strain ET080813T encoding two distinct T3SS and three T6SS gene clusters: Propose a novel species as Edwardsiella anguillarum sp. nov . Syst Appl Microbiol. 38(1):36-47. [PMID:25466920]
(30) Wang S et al (2014) DotU expression is highly induced during in vivo infection and responsible for virulence and Hcp1 secretion in avian pathogenic Escherichia coli. Front Microbiol. 5:588. [PMID:25426107]
(31) Eijkelkamp BA et al (2014) Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii. BMC Genomics. 15(1):1020. [PMID:25422040]
(32) Yap KP et al (2014) Comparative genomics of closely related Salmonella enterica serovar Typhi strains reveals genome dynamics and the acquisition of novel pathogenic elements. BMC Genomics. 15(1):1007. [PMID:25412680]
(33) Shyntum D et al (2014) Pantoea ananatis utilizes a type VI secretion system for pathogenesis and bacterial competition. Mol Plant Microbe Interact. doi: [PMID:25411959]
(34) Zhu Ge X et al (2014) Comparative Genomic Analysis Shows That Avian Pathogenic Escherichia coli Isolate IMT5155 (O2:K1:H5; ST Complex 95, ST140) Shares Close Relationship with ST95 APEC O1:K1 and Human ExPEC O18:K1 Strains. PLoS One. 9(11):e112048. [PMID:25397580]
(35) Ye L et al (2014) Draft Genome Sequence Analysis of a Pseudomonas putida W15Oct28 Strain with Antagonistic Activity to Gram-Positive and Pseudomonas sp. Pathogens. PLoS One. 9(11):e110038. [PMID:25369289]
(36) Forster A et al (2014) Coevolution of the ATPase ClpV, the Sheath Proteins TssB and TssC and the Accessory Protein TagJ/HsiE1 Distinguishes Type VI Secretion Classes. J Biol Chem. 289(47):33032-43. [PMID:25305017]
(37) Jeong JH et al (2014) Purification, crystallization and preliminary X-ray crystallographic analysis of TssL from Vibrio cholerae. Acta Crystallogr F Struct Biol Commun. 70(Pt 9):1260-3. [PMID:25195905]
(38) Law HT et al (2014) IglC and PdpA Are Important for Promoting Francisella Invasion and Intracellular Growth in Epithelial Cells. PLoS One. 9(8):e104881. [PMID:25115488]
(39) Bielecki P et al (2014) In Vivo mRNA Profiling of Uropathogenic Escherichia coli from Diverse Phylogroups Reveals Common and Group-Specific Gene Expression Profiles. MBio. 5(4). [PMID:25096872]
(40) Schumacher J et al (2014) Differential secretome analysis of Pseudomonas syringae pv tomato using gel-free MS proteomics. Front Plant Sci. 5:242. [PMID:25071788]
(41) Russell AB et al (2014) A Type VI Secretion-Related Pathway in Bacteroidetes Mediates Interbacterial Antagonism. Cell Host Microbe. 16(2):227-36. [PMID:25070807]
(42) Darby A et al (2014) Cytotoxic and Pathogenic Properties of Klebsiella oxytoca Isolated from Laboratory Animals. PLoS One. 9(7):e100542. [PMID:25057966]
(43) Sarris PF et al (2014) A Phage Tail-Derived Element with Wide Distribution among Both Prokaryotic Domains: A Comparative Genomic and Phylogenetic Study. Genome Biol Evol. 6(7):1739-1747. [PMID:25015235]
(44) Zhang L et al (2014) TssB is essential for virulence and required for Type VI secretion system in Ralstonia solanacearum. Microb Pathog. 74C:1-7. [PMID:24972114]
(45) Kube S et al (2014) Structure of the VipA/B Type VI Secretion Complex Suggests a Contraction-State-Specific Recycling Mechanism. Cell Rep. 16(1):94-104. [PMID:24953649]
(46) Lindgren M et al (2014) Identification of Mechanisms for Attenuation of the FSC043 Mutant of Francisella tularensis SCHU S4. Infect Immun. 82(9):3622-35. [PMID:24935978]
(47) Sun K et al (2014) Screening for inhibition of the Vibrio cholerae VipA-VipB interaction identifies small molecule compounds active against type VI secretion. Antimicrob Agents Chemother. 58(7):4123-4130. [PMID:24798289]
(48) Hachani A et al (2014) The VgrG proteins are "A la carte" delivery systems for bacterial type VI effectors. J Biol Chem. 289(25):17872-17884. [PMID:24794869]
(49) English G et al (2014) Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG sub-complex. Biochem J. 461(2):291-304. [PMID:24779861]
(50) Klaponski N et al (2014) The requirement for the LysR-type regulator PtrA for Pseudomonas chlororaphis PA23 biocontrol revealed through proteomic and phenotypic analysis. BMC Microbiol. 14:94. [PMID:24739259]
(51) Rudder S et al (2014) Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes. BMC Genomics. 15(1):268. [PMID:24708309]
(52) Shao Y et al (2014) Quorum regulatory small RNAs repress type VI secretion in Vibrio cholerae. Mol Microbiol. 92(5):921-30. [PMID:24698180]
(53) Zoued A et al (2014) Architecture and assembly of the Type VI secretion system. Biochim Biophys Acta. 1843(8):1664-73. [PMID:24681160]
(54) Singha H et al (2014) Optimization and validation of indirect ELISA using truncated TssB protein for the serodiagnosis of glanders amongst equines. ScientificWorldJournal. 2014:469407. [PMID:24672321]
(55) Peano C et al (2014) Gene and Protein Expression in Response to Different Growth Temperatures and Oxygen Availability in Burkholderia thailandensis. PLoS One. 9(3):e93009. [PMID:24671187]
(56) Lin JS et al (2014) Fha Interaction with Phosphothreonine of TssL Activates Type VI Secretion in Agrobacterium tumefaciens. PLoS Pathog. 10(3):e1003991. [PMID:24626341]
(57) Nguyen J et al (2014) Lipidation of the FPI Protein IglE contributes to Francisella tularensis subsp. novicida Intramacrophage Replication and Virulence. Pathog Dis. 72(1):10-8. [PMID:24616435]
(58) Jones CJ et al (2014) ChIP-Seq and RNA-Seq Reveal an AmrZ-Mediated Mechanism for Cyclic di-GMP Synthesis and Biofilm Development by Pseudomonas aeruginosa. PLoS Pathog. 10(3):e1003984. [PMID:24603766]
(59) Hopf V et al (2014) BPSS1504, a cluster 1 type VI secretion gene, is involved in intracellular survival and virulence of Burkholderia pseudomallei. Infect Immun. 82(5):2006-15. [PMID:24595140]
(60) Shyntum DY et al (2014) Comparative genomics of type VI secretion systems in strains of Pantoea ananatis from different environments. BMC Genomics. 15(1):163. [PMID:24571088]
(61) Uda A et al (2014) Role of Pathogenicity Determinant Protein C (PdpC) in Determining the Virulence of the Francisella tularensis Subspecies tularensis SCHU. PLoS One. 9(2):e89075. [PMID:24558472]
(62) Douzi B et al (2014) Crystal Structure and Self-Interaction of the Type VI Secretion Tail-Tube Protein from Enteroaggregative Escherichia coli. PLoS One. 9(2):e86918. [PMID:24551044]
(63) Sarkar A et al (2014) Transcriptional Profiling of Nitrogen Fixation and the Role of NifA in the Diazotrophic Endophyte Azoarcus sp. Strain BH72. PLoS One. 9(2):e86527. [PMID:24516534]
(64) Steele S et al (2014) A method for functional trans-complementation of intracellular Francisella tularensis. PLoS One. 9(2):e88194. [PMID:24505427]
(65) Schwarz S et al (2014) VgrG-5 is a Burkholderia type VI secretion exported protein required for multinucleated giant cell formation and virulence. Infect Immun. 82(4):1445-52. [PMID:24452686]
(66) Wright MS et al (2014) New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis. MBio. 5(1):e00963-13. [PMID:24449752]
(67) Lu X et al (2014) Identification of Genetic bases of Vibrio fluvialis species-specific biochemical pathways and potential virulence factors by comparative genomic analysis. Appl Environ Microbiol. 80(6):2029-37. [PMID:24441165]
(68) Toesca IJ et al (2014) The Type VI Secretion System Spike Protein VgrG5 Mediates Membrane Fusion during Intercellular Spread by Pseudomallei Group Burkholderia Species. Infect Immun. 82(4):1436-44. [PMID:24421040]
(69) Pezoa D et al (2014) Only one of the two type VI secretion systems encoded in the Salmonella enterica serotype Dublin genome is involved in colonization of the avian and murine hosts. Vet Res. 45(1):2. [PMID:24405577]
(70) Kumari H et al (2014) LTQ-XL mass spectrometry proteome analysis expands the Pseudomonas aeruginosa AmpR regulon to include cyclic di-GMP phosphodiesterases and phosphoproteins, and identifies novel open reading frames. J Proteomics. 96:328-42. [PMID:24291602]
(71) Kakar KU et al (2014) Characterizing the mode of action of Brevibacillus laterosporus B4 for control of bacterial brown strip of rice caused by A. avenae subsp. avenae RS-1. World J Microbiol Biotechnol. 30(2):469-78. [PMID:23990042]
(72) Ho BT et al (2013) A View to a Kill: The Bacterial Type VI Secretion System. Cell Host Microbe. 15(1):9-21. [PMID:24332978]
(73) Jones C et al (2013) An rhs-encoding gene linked to the second type VI secretion cluster is a feature of the Pseudomonas aeruginosa strain PA14. J Bacteriol. 196(4):800-10. [PMID:24317402]
(74) Uchida K et al (2013) Structure and properties of the C-terminal beta-helical domain of VgrG protein from Escherichia coli O157. J Biochem. 155(3):173-82. [PMID:24307403]
(75) Zhang XY et al (2013) Dissection of the TssB-TssC Interface during Type VI Secretion Sheath Complex Formation. PLoS One. 8(11):e81074. [PMID:24282569]
(76) Fory PA et al (2013) Comparative analysis of two emerging rice seed bacterial pathogens. Phytopathology. 104(5):436-44. [PMID:24261408]
(77) Jones C et al (2013) Subinhibitory Concentration of Kanamycin Induces the Pseudomonas aeruginosa type VI Secretion System. PLoS One. 8(11):e81132. [PMID:24260549]
(78) Carruthers MD et al (2013) Draft Genome Sequence of the Clinical Isolate Acinetobacter nosocomialis Strain M2. Genome Announc. 1(6). [PMID:24201195]
(79) Rosenzweig JA et al (2013) Modulation of host immune defenses by Aeromonas and Yersinia species: convergence on toxins secreted by various secretion systems. Front Cell Infect Microbiol. 3:70. [PMID:24199174]
(80) Ma J et al (2013) Genetic diversity and features analysis of type VI secretion systems loci in avian pathogenic Escherichia coli by wide genomic scanning. Infect Genet Evol. 20:454-64. [PMID:24120694]
(81) Liu WY et al (2013) Comparative Genome Analysis of Enterobacter cloacae. PLoS One. 8(9):e74487. [PMID:24069314]
(82) Alteri CJ et al (2013) Multicellular Bacteria Deploy the Type VI Secretion System to Preemptively Strike Neighboring Cells. PLoS Pathog. 9(9):e1003608. [PMID:24039579]
(83) Robertson GT et al (2013) IglE is an outer membrane-associated lipoprotein essential for intracellular survival and murine virulence of Type A Francisella tularensis. Infect Immun. 81(11):4026-40. [PMID:23959721]
(84) Freeman BC et al (2013) Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in their epiphytic fitness and osmotolerance. J Bacteriol. 195(20):4742-52. [PMID:23955010]
(85) Silverman JM et al (2013) Haemolysin Coregulated Protein Is an Exported Receptor and Chaperone of Type VI Secretion Substrates. Mol Cell. 51(5):584-93. [PMID:23954347]
(86) Franca FL et al (2013) Genotypic and phenotypic characterisation of enteroaggregative Escherichia coli from children in Rio de Janeiro, Brazil. PLoS One. 8(7):e69971. [PMID:23936127]
(87) Shneider MM et al (2013) PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature. 500(7462):350-3. [PMID:23925114]
(88) Zoued A et al (2013) TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the Type VI secretion system. J Biol Chem. 288(38):27031-41. [PMID:23921384]
(89) Jakobsen TH et al (2013) Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes. PLoS One. 8(7):e68484. [PMID:23894309]
(90) Wenren LM et al (2013) Two Independent Pathways for Self-Recognition in Proteus mirabilis Are Linked by Type VI-Dependent Export. MBio. 4(4). [PMID:23882014]
(91) Lin JS et al (2013) Systematic Dissection of the Agrobacterium Type VI Secretion System Reveals Machinery and Secreted Components for Subcomplex Formation. PLoS One. 8(7):e67647. [PMID:23861778]
(92) Gueguen E et al (2013) Expression of a Yersinia pseudotuberculosis Type VI Secretion System Is Responsive to Envelope Stresses through the OmpR Transcriptional Activator. PLoS One. 8(6):e66615. [PMID:23840509]
(93) Barret M et al (2013) Distribution and diversity of bacterial secretion systems across metagenomic datasets. Environ Microbiol Rep. 5(1):117-26. [PMID:23757140]
(94) Marchi M et al (2013) Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots. Environ Microbiol Rep. 5(3):393-403. [PMID:23754720]
(95) Casabona MG et al (2013) Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane. Proteomics. 13(16):2419-23. [PMID:23744604]
(96) Bleumink-Pluym NM et al (2013) Identification of a Functional Type VI Secretion System in Campylobacter jejuni Conferring Capsule Polysaccharide Sensitive Cytotoxicity. PLoS Pathog. 9(5):e1003393. [PMID:23737749]
(97) Smits TH et al (2013) Phylogenetic position and virulence apparatus of the pear flower necrosis pathogen Erwinia piriflorinigrans CFBP 5888T as assessed by comparative genomics. Syst Appl Microbiol. 36(7):449-56. [PMID:23726521]
(98) Hayward MR et al (2013) Comparative genomics of Salmonella enterica serovars Derby and Mbandaka, two prevalent serovars associated with different livestock species in the UK. BMC Genomics. 14:365. [PMID:23725633]
(99) Grim CJ et al (2013) Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation. BMC Genomics. 14:366. [PMID:23724777]
(100) Robb CS et al (2013) Structure of the T6SS lipoprotein TssJ1 from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 69(Pt 6):607-10. [PMID:23722835]
(101) Horton RE et al (2013) Quorum sensing negatively regulates multinucleate cell formation during intracellular growth of Burkholderia pseudomallei in macrophage-like cells. PLoS One. 8(5):e63394. [PMID:23704903]
(102) Khan A et al (2013) Genome characterization of a novel Burkholderia cepacia complex genomovar isolated from dieback affected mango orchards. World J Microbiol Biotechnol. 29(11):2033-44. [PMID:23653265]
(103) Broms JE et al (2013) A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552. BMC Microbiol. 13(1):96. [PMID:23642157]
(104) Zhang L et al (2013) Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS One. 8(4):e61625. [PMID:23637868]
(105) Bondarev V et al (2013) The genus Pseudovibrio contains metabolically versatile bacteria adapted for symbiosis. Environ Microbiol. 15(7):2095-113. [PMID:23601235]
(106) Arvizu-Gomez JL et al (2013) Transcriptional profile of P. syringae pv. phaseolicola NPS3121 at low temperature: physiology of phytopathogenic bacteria. BMC Microbiol. 13:81. [PMID:23587016]
(107) Campbell AG et al (2013) Multiple single-cell genomes provide insight into functions of uncultured Deltaproteobacteria in the human oral cavity. PLoS One. 8(3):e59361. [PMID:23555659]
(108) Wang Y et al (2013) Proteomic analysis of a twin-arginine translocation-deficient mutant unravel its functions involved in stress adaptation and virulence in fish pathogen Edwardsiella tarda. FEMS Microbiol Lett. 343(2):145-55. [PMID:23551118]
(109) Coulthurst SJ (2013) The type VI secretion system - a widespread and versatile cell targeting system. Res Microbiol. 164(6):640-54. [PMID:23542428]
(110) Lindgren M et al (2013) Importance of PdpC, IglC, IglI, and IglG for modulation of a host cell death pathway induced by Francisella tularensis LVS. Infect Immun. 81(6):2076-84. [PMID:23529623]
(111) Sha J et al (2013) Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology. 159(Pt 6):1120-35. [PMID:23519162]
(112) Duan J et al (2013) The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS One. 8(3):e58640. [PMID:23516524]
(113) Desai PT et al (2013) Evolutionary Genomics of Salmonella enterica Subspecies. MBio. 4(2):e00198-13. [PMID:23462113]
(114) Miyata ST et al (2013) Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol. 62(Pt 5):663-76. [PMID:23429693]
(115) Sugawara M et al (2013) Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol. 14(2):R17. [PMID:23425606]
(116) van Delden C et al (2013) Involvement of Fe uptake systems and AmpC beta-lactamase in susceptibility to the siderophore monosulfactam BAL30072 in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 57(5):2095-102. [PMID:23422914]
(117) Mann RA et al (2013) Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core. PLoS One. 8(2):e55644. [PMID:23409014]
(118) Filiatrault MJ et al (2013) Pseudomonas aeruginosa PA1006, Which Plays a Role in Molybdenum Homeostasis, Is Required for Nitrate Utilization, Biofilm Formation, and Virulence. PLoS One. 8(2):e55594. [PMID:23409004]
(119) Blondel CJ et al (2013) The Type VI Secretion System encoded in SPI-19 is required for Salmonella Gallinarum survival within infected macrophages. Infect Immun. 81(4):1207-20. [PMID:23357385]
(120) Lindgren M et al (2013) The Francisella tularensis LVS DeltapdpC mutant exhibits a unique phenotype during intracellular infection. BMC Microbiol. 13(1):20. [PMID:23356941]
(121) Redondo-Nieto M et al (2013) Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genomics. 14:54. [PMID:23350846]
(122) Grad YH et al (2013) Comparative genomics of recent Shiga toxin-producing Escherichia coli O104:H4: short-term evolution of an emerging pathogen. MBio. 4(1):e00452-12. [PMID:23341549]
(123) Lossi NS et al (2013) The HsiB1C1 (TssB/TssC) complex of the Pseudomonas aeruginosa type VI secretion system forms a bacteriophage tail sheath-like structure. J Biol Chem. 288(11):7536-48. [PMID:23341461]
(124) Kapitein N et al (2013) Deadly syringes: type VI secretion system activities in pathogenicity and interbacterial competition. Curr Opin Microbiol. 16(1):52-8. [PMID:23290191]
(125) Kapitein N et al (2013) ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Mol Microbiol. 87(5):1013-28. [PMID:23289512]
(126) Bartonickova L et al (2013) Hcp and VgrG1 are secreted components of the Helicobacter hepaticus type VI secretion system and VgrG1 increases the bacterial colitogenic potential. Cell Microbiol. 15(6):992-1011. [PMID:23278999]
(127) Long ME et al (2013) Disruption of Francisella tularensis Schu S4 iglI, iglJ, and pdpC genes results in attenuation for growth in human macrophages and in vivo virulence in mice, and reveals a unique phenotype for pdpC. Infect Immun. 81(3):850-61. [PMID:23275090]
(128) Hao B et al (2013) Role of alternative sigma factor 54 (RpoN) from Vibrio anguillarum M3 in protease secretion, exopolysaccharide production, biofilm formation, and virulence. Appl Microbiol Biotechnol. 97(6):2575-85. [PMID:22940804]
(129) Broms JE et al (2012) Unique Substrates Secreted by the Type VI Secretion System of Francisella tularensis during Intramacrophage Infection. PLoS One. 7(11):e50473. [PMID:23185631]
(130) Ibrahim M et al (2012) Differential expression of in vivo and in vitro protein profile of outer membrane of Acidovorax avenae subsp. avenae. PLoS One. 7(11):e49657. [PMID:23166741]
(131) Nykyri J et al (2012) Revised Phylogeny and Novel Horizontally Acquired Virulence Determinants of the Model Soft Rot Phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog. 8(11):e1003013. [PMID:23133391]
(132) Ma L et al (2012) Expression of the Type VI Secretion System 1 Component Hcp1 Is Indirectly Repressed by OpaR in Vibrio parahaemolyticus. Scientific World Journal. 2012:982140. [PMID:22924031]
(133) Lossi NS et al (2012) The archetype Pseudomonas aeruginosa proteins TssB and TagJ form a novel subcomplex in the bacterial type VI secretion system. Mol Microbiol. 86(2):437-56. [PMID:22906320]
(134) Durand E et al (2012) Crystal structure of the VgrG1 actin cross-linking domain of the Vibrio cholerae Type VI secretion system. J Biol Chem. 287(45):38190-9. [PMID:22898822]
(135) Basler M et al (2012) Type 6 secretion dynamics within and between bacterial cells. Science. 337(6096):815. [PMID:22767897]
(136) Kefala K et al (2012) Purification, crystallization and preliminary X-ray diffraction analysis of the C-terminal fragment of the MvfR protein from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun. 68(Pt 6):695-7. [PMID:22684073]
(137) Liu H et al (2012) Investigation of the roles of T6SS genes in motility, biofilm formation, and extracellular protease Asp production in Vibrio alginolyticus with modified Gateway-compatible plasmids. Lett Appl Microbiol. 55(1):73-81. [PMID:22563695]
(138) Broms JE et al (2012) DotU and VgrG, core components of type VI secretion systems, are essential for Francisella LVS pathogenicity. PLoS One. 7(4):e34639. [PMID:22514651]
(139) Robb CS et al (2012) The structure of the conserved type six secretion protein TssL (DotU) from Francisella novicida. J Mol Biol. 419(5):277-83. [PMID:22504227]
(140) Zechner EL et al (2012) Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci. 367(1592):1073-87. [PMID:22411979]
(141) Ma LS et al (2012) IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion. J Biol Chem. 287(19):15610-21. [PMID:22393043]
(142) Durand E et al (2012) Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems. J Biol Chem. 287(17):14157-68. [PMID:22371492]
(143) Basler M et al (2012) Type VI secretion requires a dynamic contractile phage tail-like structure. Nature. 483(7388):182-6. [PMID:22367545]
(144) Hebert L et al (2012) Genomic characterization of the Taylorella genus. PLoS One. 7(1):e29953. [PMID:22235352]
(145) Zhou Y et al (2012) Hcp family proteins secreted via the type VI secretion system coordinately regulate Escherichia coli K1 interaction with human brain microvascular endothelial cells. Infect Immun. 80(3):1243-51. [PMID:22184413]
(146) Rao VA et al (2011) The structure of Serratia marcescens Lip, a membrane-bound component of the type VI secretion system. Acta Crystallogr D Biol Crystallogr. 67(Pt 12):1065-72. [PMID:22120744]
(147) Felisberto-Rodrigues C et al (2011) Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathog. 7(11):e1002386. [PMID:22102820]
(148) de Bruin OM et al (2011) The biochemical properties of the Francisella pathogenicity island (FPI)-encoded proteins IglA, IglB, IglC, PdpB and DotU suggest roles in type VI secretion. Microbiology. 157(Pt 12):3483-91. [PMID:21980115]
(149) Lossi NS et al (2011) Structure-function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa. Microbiology. 157(Pt 12):3292-305. [PMID:21873404]
(150) Zhang L et al (2011) Pseudomonas aeruginosa tssC1 links type VI secretion and biofilm-specific antibiotic resistance. J Bacteriol. 193(19):5510-3. [PMID:21784934]
(151) Podladchikova O et al (2011) Yersinia pestis autoagglutination factor is a component of the type six secretion system. Int J Med Microbiol. 301(7):562-9. [PMID:21784704]
(152) de Pace F et al (2011) Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain. Microbiology. 157(Pt 10):2954-62. [PMID:21778203]
(153) Pietrosiuk A et al (2011) Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion. J Biol Chem. 286(34):30010-21. [PMID:21733841]
(154) Broms JE et al (2011) IglG and IglI of the Francisella pathogenicity island are important virulence determinants of Francisella tularensis LVS. Infect Immun. 79(9):3683-96. [PMID:21690239]
(155) Franco AA et al (2011) Characterization of putative virulence genes on the related RepFIB plasmids harbored by Cronobacter spp. Appl Environ Microbiol. 77(10):3255-67. [PMID:21421789]
(156) Records AR (2011) The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant Microbe Interact. 24(7):751-7. [PMID:21361789]
(157) Wu X et al (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev. 35(2):299-323. [PMID:20796030]
(158) Aschtgen MS et al (2010) Anchoring the type VI secretion system to the peptidoglycan: TssL, TagL, TagP... what else. Virulence. 1(6):535-40. [PMID:21178498]
(159) Robb CS et al (2010) Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of intracellular growth locus E (IglE) protein from Francisella tularensis subsp. novicida. Acta Crystallogr Sect F Struct Biol Cryst Commun. 66(Pt 12):1596-8. [PMID:21139203]
(160) Aubert D et al (2010) BcsKC is an essential protein for the type VI secretion system activity in Burkholderia cenocepacia that forms an outer membrane complex with BcsLB. J Biol Chem. 285(46):35988-98. [PMID:20729192]
(161) Aschtgen MS et al (2010) The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol. 75(4):886-99. [PMID:20487285]
(162) Kucerova E1, Clifton SW, Xia XQ, Long F et al (2010) Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS One. 5(3):e9556. [PMID:20221447]
(163) Roy PH et al (2010) Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One. 5(1):e8842. [PMID:20107499]
(164) Chaudhuri RR et al (2010) Complete genome sequence and comparative metabolic profiling of the prototypical enteroaggregative Escherichia coli strain 042. PLoS One. 5(1):e8801. [PMID:20098708]
(165) Hassan KA et al (2010) Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol. 12(4):899-915. [PMID:20089046]
(166) Konovalova A et al (2010) Extracellular biology of Myxococcus xanthus. FEMS Microbiol Rev. 34(2):89-106. [PMID:19895646]
(167) Wang Q et al (2009) Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS One. 4(10):e7646. [PMID:19865481]
(168) Carranza P et al (2009) Proteomic profiling of Cronobacter turicensis 3032, a food-borne opportunistic pathogen. Proteomics. 9(13):3564-79. [PMID:19609963]
(169) Yang JC et al (2009) The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS One. 4(7):e6085. [PMID:19568419]
(170) Ma LS et al (2009) An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol. 191(13):4316-29. [PMID:19395482]
(171) Wehrly TD et al (2009) Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell Microbiol. 11(7):1128-50. [PMID:19388904]
(172) Schmerk CL et al (2009) A Francisella novicida pdpA mutant exhibits limited intracellular replication and remains associated with the lysosomal marker LAMP-1. Microbiology. 155(Pt 5):1498-504. [PMID:19372155]
(173) Schmerk CL et al (2009) Characterization of the pathogenicity island protein PdpA and its role in the virulence of Francisella novicida. Microbiology. 155(Pt 5):1489-97. [PMID:19372153]
(174) Tseng TT et al (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol. 9 Suppl 1:S2. [PMID:19278550]
(175) Pell LG et al (2009) The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci U S A. 106(11):4160-5. [PMID:19251647]
(176) Leiman PG et al (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A. 106(11):4154-9. [PMID:19251641]
(177) Filloux A (2009) The type VI secretion system: a tubular story. EMBO J. 28(4):309-10. [PMID:19225443]
(178) Broms JE et al (2009) A conserved alpha-helix essential for a type VI secretion-like system of Francisella tularensis. J Bacteriol. 191(8):2431-46. [PMID:19201795]
(179) Bonemann G et al (2009) Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J. 28(4):315-25. [PMID:19131969]
(180) Aschtgen MS et al (2008) SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J Bacteriol. 190(22):7523-31. [PMID:18805985]
(181) Pieper R et al (2008) Characterizing the dynamic nature of the Yersinia pestis periplasmic proteome in response to nutrient exhaustion and temperature change. Proteomics. 8(7):1442-58. [PMID:18383009]
(182) Nemoto M et al (2008) ORF334 in Vibrio phage KVP40 plays the role of gp27 in T4 phage to form a heterohexameric complex. J Bacteriol. 190(10):3606-12. [PMID:18326574]
(183) de Berardinis V et al (2008) A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol Syst Biol. 4:174. [PMID:18319726]
(184) Yen YT et al (2008) Genome-wide in silico mapping of the secretome in pathogenic Yersinia pestis KIM. FEMS Microbiol Lett . 279(1):56-63. [PMID:18070074]
(185) Forouhar F et al (2007) Functional insights from structural genomics. J Struct Funct Genomics. 8(2-3):37-44. [PMID:17588214]
(186) Santic M et al (2007) A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol. Cell Microbiol. 9(10):2391-403. [PMID:17517064]
(187) Gerlach RG et al (2007) Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol. 297(6):401-15. [PMID:17482513]
(188) de Bruin OM et al (2007) The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol. 7:1. [PMID:17233889]
(189) Economou A et al (2006) Secretion by numbers: Protein traffic in prokaryotes. Mol Microbiol. 62(2):308-19. [PMID:17020575]
(190) Pilatz S et al (2006) Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect Immun. 74(6):3576-86. [PMID:16714590]
(191) Schlieker C et al (2005) ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria. Biol Chem. 386(11):1115-27. [PMID:16307477]
(192) Hanson PI et al (2005) AAA+ proteins: have engine, will work. Nat Rev Mol Cell Biol. 6(7):519-29. [PMID:16072036]
(193) Parsons DA et al (2005) sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun. 73(7):4338-45. [PMID:15972528]
(194) Santic M et al (2005) The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell Microbiol. 7(7):969-79. [PMID:15953029]
(195) Das S et al (2003) Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In Silico Biol. 3(3):287-300. [PMID:12954091]
(196) Das S et al (2002) Involvement of in vivo induced icmF gene of Vibrio cholerae in motility, adherence to epithelial cells, and conjugation frequency. Biochem Biophys Res Commun. 295(4):922-8. [PMID:12127983]